Fast特征点的寻找和提取

简介: 一、基础最初由Rosten和Drummond [Rosten06]提出的FAST(加速段测试的特征)特征检测算法是基于将点P与其包围圆内的点集的直接比较的思想。基本思想是,如果附近的几个点与P类似,那么P将成为一个很好的关键点。
一、基础

最初由RostenDrummond [Rosten06]提出的FAST(加速段测试的特征)特征检测算法是基于将点P与其包围圆内的点集的直接比较的思想。

基本思想是,如果附近的几个点与P类似,那么P将成为一个很好的关键点。PFAST算法的关键点候选者。 影响P分类的点的圈由p周围的圆确定。 在这种情况下,该圆上有16个像素,这里编号为0-15。

img_f2c9b807727859ad091a95d2813cfb68.jpe

具体的算法在这里并没有说明。

二、函数

class cv::FastFeatureDetector : public cv::Feature2D {

public:

  enum {

    TYPE_5_8  = 0,                      //  8 points, requires 5 in a row

    TYPE_7_12 = 1,                      // 12 points, requires 7 in a row

    TYPE_9_16 = 2                       // 16 points, requires 9 in a row

  };

  static Ptr<FastFeatureDetector> create(

    int    threshold        = 10,       // 像素强度

    bool   nonmaxSupression = true,     // 打开或关闭得分较低的邻近点的抑制

    int    type             = TYPE_9_16 // 参数设置运算符的类型

  );

...

};

三、小结
fast算法本身 基本上已经成为历史的一部分,这里只是作为简单的知识了解一下而已;但是图像处理的基本思路存在循环发展的情况,也就是经典的算法在新的运用场景下面会不断得到新的开发利用:比如fast,在 ORB中得到了和Brief特征的结合,我们届时继续研究。





目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
6月前
FAST特征检测
FAST特征检测。
55 2
|
5月前
FAST关键点检测
【6月更文挑战第5天】FAST关键点检测。
33 4
|
5月前
|
算法 计算机视觉 Python
SIFT关键点检测
【6月更文挑战第5天】SIFT关键点检测。
39 4
|
5月前
|
算法 计算机视觉 Python
使用分水岭算法分割图像
【6月更文挑战第4天】使用分水岭算法分割图像。
433 4
|
6月前
|
传感器 编解码 算法
Anchor-free应用一览:目标检测、实例分割、多目标跟踪
Anchor-free应用一览:目标检测、实例分割、多目标跟踪
143 0
|
传感器 机器学习/深度学习 Ubuntu
【论文解读】F-PointNet 使用RGB图像和Depth点云深度 数据的3D目标检测
​F-PointNet 提出了直接处理点云数据的方案,但这种方式面临着挑战,比如:如何有效地在三维空间中定位目标的可能位置,即如何产生 3D 候选框,假如全局搜索将会耗费大量算力与时间。 F-PointNet是在进行点云处理之前,先使用图像信息得到一些先验搜索范围,这样既能提高效率,又能增加准确率。 论文地址:Frustum PointNets for 3D Object Detection from RGB-D Data  开源代码:https://github.com/charlesq34/frustum-pointnets
754 0
|
机器学习/深度学习 算法 计算机视觉
人证比对+图片相似度+MTCNN+FACENET+CNN
人证比对+图片相似度+MTCNN+FACENET+CNN
166 1
|
机器学习/深度学习 编解码 算法
图像目标分割_4 DeepLab-V1
相比于传统的视觉算法(SIFT或HOG),Deep-CNN以其end-to-end方式获得了很好的效果。这样的成功部分可以归功于Deep-CNN对图像转换的平移不变性(invariance),这根本是源于重复的池化和下采样组合层。平移不变性增强了对数据分层抽象的能力,但同时可能会阻碍低级(low-level)视觉任务,例如姿态估计、语义分割等,在这些任务中我们倾向于精确的定位而不是抽象的空间关系。
122 0
图像目标分割_4 DeepLab-V1
|
机器学习/深度学习 存储 算法
图像特征提取与描述_角点特征03:Fast算法+ORB算法
我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法,并在2010年对其进行了修正。
617 0
|
机器学习/深度学习 数据挖掘 计算机视觉
Anchor Free的孪生目标跟踪
以DCF和SiamFC为主的跟踪器,构建多尺度金字塔,将搜索区域缩放到多个比例,选择最高得分对应的尺度,这种方式是最不精确的同时先验的固定长宽比不适合现实任务;
138 0