基于RandomForestRegressor的波士顿房价回归预测

简介: RandomForestRegressor中文叫做随机森林回归模型,是一种常用的集成模型。2018年8月27日笔记sklearn官方英文用户使用指南:https://sklearn.org/user_guide.htmlsklearn翻译中文用户使用指南:http://sklearn.apachecn.org/cn/0.19.0/user_guide.html本文使用的数据集是波士顿房价数据集,可以使用sklearn,datasets库中的load_boston方法直接获取数据。

RandomForestRegressor中文叫做随机森林回归模型,是一种常用的集成模型。

2018年8月27日笔记
sklearn官方英文用户使用指南:https://sklearn.org/user_guide.html
sklearn翻译中文用户使用指南:http://sklearn.apachecn.org/cn/0.19.0/user_guide.html
本文使用的数据集是波士顿房价数据集,可以使用sklearn,datasets库中的load_boston方法直接获取数据。

0.打开jupyter notebook

不知道怎么打开jupyter notebook的朋友请查看我的入门指南文章:https://www.jianshu.com/p/bb0812a70246

1.准备数据

阅读此篇文章的基础是已经阅读了作者的上一篇文章《基于LinearRegression的波士顿房价预测》。
文章链接:https://www.jianshu.com/p/f828eae005a1
加载数据集中的预测目标值。

from sklearn.datasets import load_boston

y = load_boston().target

如果阅读过上一篇文章,读者应该知道特征提取后的数据处理主要是对数据进行分箱,从而产生新的字段。
将数据处理的过程封装成函数,代码如下:

def dataProcessing(df):
    field_cut = {
    'CRIM' : [0,10,20, 100],
    'ZN' : [-1, 5, 18, 20, 40, 80, 86, 100], 
    'INDUS' : [-1, 7, 15, 23, 40],
    'NOX' : [0, 0.51, 0.6, 0.7, 0.8, 1],
    'RM' : [0, 4, 5, 6, 7, 8, 9],
    'AGE' : [0, 60, 80, 100],
    'DIS' : [0, 2, 6, 14],
    'RAD' : [0, 5, 10, 25],
    'TAX' : [0, 200, 400, 500, 800],
    'PTRATIO' : [0, 14, 20, 23],
    'B' : [0, 100, 350, 450],
    'LSTAT' : [0, 5, 10, 20, 40]
    }
    df = df[load_boston().feature_names].copy()
    cut_df = pd.DataFrame()
    for field in field_cut.keys():
        cut_series = pd.cut(df[field], field_cut[field], right=True)
        onehot_df = pd.get_dummies(cut_series, prefix=field)
        cut_df = pd.concat([cut_df, onehot_df], axis=1)
    new_df = pd.concat([df, cut_df], axis=1)
    return new_df

调用函数dataProcessing形成新的特征矩阵,代码如下:

import pandas as pd

df = pd.DataFrame(load_boston().data, columns=load_boston().feature_names)
new_df = dataProcessing(df)
print(new_df.columns)
new_df.head()

上面一段代码的运行结果如下图所示:


img_c2f5dbd6075c0493c8efc1d5cca9e221.png
提取特征后的特征矩阵.png

将特征处理后的特征矩阵赋值给变量X,代码如下:

X = new_df.values

2.清除异常值

波士顿房价预测是kaggle网站上2016年的比赛。
网上有资料显示有部分预测目标异常值为50,所以我们删除具有此异常值的样本。
代码如下:

X = new_df.values
y = load_boston().target
print(X.shape)
X = X[y!=50]
y = y[y!=50]
print(X.shape)

上面一段代码的运行结果如下图所示:


img_bdf0b5690e0bb9db5ddd5a784d34649d.png
image.png

从上图中可以看出,特征矩阵X的行数由506变成了490。

3.决策树回归模型

使用决策树回归模型做回归预测,并使用交叉验证查看模型得分。
调用sklearn.tree库的DecisionTreeRegressor方法实例化模型对象。
调用sklearn.model_selection库的KFold方法实例化交叉验证对象。
调用sklearn.model_selection库的cross_val_score方法做交叉验证。
cross_val_score方法需要4个参数,第1个参数是模型对象,第2个参数是特征矩阵X,第3个参数是预测目标值y,第4个关键字参数cv可以为整数或者交叉验证对象,此处因为样本数只有506个,所以得指定交叉验证对象,而且实例化交叉验证对象的时候,必须设置关键字参数shuffle=True,如果不进行设置,会发生严重的错误,读者可以自己尝试一下。
从官方文档查看cross_val_score方法如何使用的链接:http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score
调用决策树回归模型的代码如下:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

randomForest_model = RandomForestRegressor()
kf = KFold(n_splits=5, shuffle=True)
score_ndarray = cross_val_score(randomForest_model, X, y, cv=kf)
print(score_ndarray)
print(score_ndarray.mean())

上面一段代码的运行结果如下:

[0.72204027 0.74381333 0.78099897 0.74281036 0.71886066]
0.741704717235011

4.随机森林回归模型

使用随机森林回归模型做回归预测,并使用交叉验证查看模型得分。
调用sklearn.ensemble库的RandonForestRegressor方法实例化模型对象。
调用sklearn.model_selection库的KFold方法实例化交叉验证对象。
调用sklearn.model_selection库的cross_val_score方法做交叉验证。
随机森林回归模型的代码如下:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

randomForest_model = RandomForestRegressor()
kf = KFold(n_splits=5, shuffle=True)
score_ndarray = cross_val_score(randomForest_model, X, y, cv=kf)
print(score_ndarray)
print(score_ndarray.mean())

上面一段代码的运行结果如下:

[0.86489282 0.8010495 0.85862078 0.85851694 0.86895527]
0.8504070609409359

5.结论

随机森林是多个决策树融合的集成模型,按照常理肯定会比单个决策树效果好。
使用随机森林回归模型可以取得较好的回归效果,比使用单个决策树回归模型提升了11%左右的准确率。

目录
相关文章
|
机器学习/深度学习 数据采集 人工智能
《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
这篇文章详细介绍了如何使用线性回归算法实现波士顿房价预测任务,包括数据读取、形状变换、集划分、归一化处理、模型设计、前向计算以及损失函数的计算等步骤,并提供了相应的Python代码实现。
 《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
|
8月前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
667 70
|
安全 API 网络安全
OpenStack的 网络服务(Neutron)
【8月更文挑战第23天】
855 10
|
5月前
|
人工智能 安全 数据安全/隐私保护
本地部署DeepSeek教程:一键远程访问,还能解决Ollama安全隐患
本教程详细介绍如何使用Ollama+Open WebUI本地部署DeepSeek模型,并借助贝锐花生壳内网穿透实现安全远程访问。首先,安装Ollama并下载DeepSeek模型,根据显存选择合适参数(如4G选1.5B)。接着,通过Docker部署Open WebUI以获得图形化交互界面。最后,利用贝锐花生壳简单三步完成远程访问设置,支持HTTPS加密传输,保障数据安全。整个过程无需云服务器,轻松打造专属AI助手。
700 5
|
6月前
|
存储 NoSQL MongoDB
微服务——MongoDB常用命令1——数据库操作
本节介绍了 MongoDB 中数据库的选择、创建与删除操作。使用 `use 数据库名称` 可选择或创建数据库,若数据库不存在则自动创建。通过 `show dbs` 或 `show databases` 查看所有可访问的数据库,用 `db` 命令查看当前数据库。注意,集合仅在插入数据后才会真正创建。数据库命名需遵循 UTF-8 格式,避免特殊字符,长度不超过 64 字节,且部分名称如 `admin`、`local` 和 `config` 为系统保留。删除数据库可通过 `db.dropDatabase()` 实现,主要用于移除已持久化的数据库。
438 0
|
安全 Android开发 Kotlin
Android经典面试题之Kotlin中常见作用域函数
**Kotlin作用域函数概览**: `let`, `run`, `with`, `apply`, `also`. `let`安全调用并返回结果; `run`在上下文中执行代码并返回结果; `with`执行代码块,返回结果; `apply`配置对象后返回自身; `also`附加操作后返回自身
198 8
|
算法 数据安全/隐私保护 云计算
保护数据隐私:CP-ABE算法的应用与原理
保护数据隐私:CP-ABE算法的应用与原理
1136 5
保护数据隐私:CP-ABE算法的应用与原理
|
数据可视化 数据挖掘 索引
探索Pandas中的explode功能
探索Pandas中的explode功能
382 1
|
Java 编译器
成功解决:java file outside of source root
解决Java文件不在源代码根目录内的问题,可以通过在IDEA中将包含.java文件的目录设置为Sources Root来修复。
成功解决:java file outside of source root
|
网络安全 数据安全/隐私保护 Docker
Pycharm 远程解释器的配置
Pycharm 远程解释器的配置