如何识别图像边缘?

简介:

图像识别(image recognition)是现在的热门技术。

文字识别、车牌识别、人脸识别都是它的应用。但是,这些都算初级应用,现在的技术已经发展到了这样一种地步:计算机可以识别出,这是一张狗的照片,那是一张猫的照片。

这是怎么做到的?

让我们从人眼说起,学者发现,人的视觉细胞对物体的边缘特别敏感。也就是说,我们先看到物体的轮廓,然后才判断这到底是什么东西。

计算机科学家受到启发,第一步也是先识别图像的边缘。

加州大学的学生 Adit Deshpande 写了一篇文章《A Beginner's Guide To Understanding Convolutional Neural Networks》,介绍了一种最简单的算法,非常具有启发性,体现了图像识别的基本思路。

首先,我们要明白,人看到的是图像,计算机看到的是一个数字矩阵。所谓"图像识别",就是从一大堆数字中找出规律。

怎样将图像转为数字呢?一般来说,为了过滤掉干扰信息,可以把图像缩小(比如缩小到 49 x 49 像素),并且把每个像素点的色彩信息转为灰度值,这样就得到了一个 49 x 49 的矩阵。

然后,从左上角开始,依次取出一个小区块,进行计算。

上图是取出一个 5 x 5 的区块。下面的计算以 7 x 7 的区块为例。

接着,需要有一些现成的边缘模式,比如垂直、直角、圆、锐角等等。

上图右边是一个圆角模式,左边是它对应的 7 x 7 灰度矩阵。可以看到,圆角所在的边缘灰度值比较高,其他地方都是0。

现在,就可以进行边缘识别了。下面是一张卡通老鼠的图片。

取出左上角的区块。

取样矩阵与模式矩阵对应位置的值相乘,进行累加,得到6600。这个值相当大,它说明什么呢?

取样矩阵移到老鼠头部,与模式矩阵相乘,得到的值是0。

乘积越大就说明越匹配,可以断定区块里的图像形状是圆角。通常会预置几十种模式,每个区块计算出最匹配的模式,然后再对整张图进行判断。

(完)

目录
相关文章
|
编解码 数据可视化 API
如果实现图像人脸融合?
本文介绍的API接口是阿里云视觉智能开放平台的图像人脸融合,用以演示。
905 1
如果实现图像人脸融合?
|
4月前
|
TensorFlow 算法框架/工具 Python
识别图像
【7月更文挑战第29天】识别图像。
88 8
|
4月前
人脸关键点检测
【7月更文挑战第31天】人脸关键点检测。
32 3
|
5月前
人脸关键点识别
【6月更文挑战第21天】
30 4
人脸关键点识别
|
6月前
|
机器学习/深度学习 人工智能 图计算
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
198 0
|
6月前
|
机器学习/深度学习 人工智能 算法
使用纹理对比度检测检测AI生成的图像
在本篇文章中我们将介绍如何开发一个深度学习模型来检测人工智能生成的图像
86 0
|
6月前
|
机器学习/深度学习 算法 API
视觉智能平台如何识别图像的某个特征?
视觉智能平台如何识别图像的某个特征?
64 0
|
SQL 机器学习/深度学习 编解码
OCR文字检测与识别系统:融合文字检测、文字识别和方向分类器的综合解决方案
OCR文字检测与识别系统:融合文字检测、文字识别和方向分类器的综合解决方案
OCR文字检测与识别系统:融合文字检测、文字识别和方向分类器的综合解决方案
|
安全 知识图谱
三维点云的开放世界理解,分类、检索、字幕和图像生成样样行
三维点云的开放世界理解,分类、检索、字幕和图像生成样样行
260 0
|
机器学习/深度学习 编解码 人工智能
图像基础二(下)
图像基础二(下)
183 0
图像基础二(下)