使用自己的语料训练word2vec模型

简介: 一、 准备环境和语料:新闻20w+篇(格式:标题。正文)【新闻可以自己从各大新闻网站爬取,也可以下载开源的新闻数据集,如互联网语料库(SogouT)中文文本分类数据集THUCNews李荣陆英文文本分类语料谭松波中文文本分类语料等结巴分词word2vec二、分词先对新闻文本进行分词,使用的是结巴分词工具,将分词后的文本保存在seg201708.txt,以备后期使用。
一、 准备环境和语料:
  • 新闻20w+篇(格式:标题正文

【新闻可以自己从各大新闻网站爬取,也可以下载开源的新闻数据集,如

二、分词

先对新闻文本进行分词,使用的是结巴分词工具,将分词后的文本保存在seg201708.txt,以备后期使用。

安装jieba工具包:pip install jieba

# -*- coding: utf-8 -*-
import jieba
import io
# 加载自己的自己的金融词库
jieba.load_userdict("financialWords.txt")

def main():
    with io.open('news201708.txt','r',encoding='utf-8') as content:
        for line in content:
            seg_list = jieba.cut(line)
#           print '/'.join(seg_list)
            with io.open('seg201708.txt', 'a', encoding='utf-8') as output:
                output.write(' '.join(seg_list))
            
if __name__ == '__main__':
    main()
三、训练word2vec模型

使用python的gensim包进行训练。

安装gemsim包:pip install gemsim

from gensim.models import word2vec

def main():

    num_features = 300    # Word vector dimensionality
    min_word_count = 10   # Minimum word count
    num_workers = 16       # Number of threads to run in parallel
    context = 10          # Context window size
    downsampling = 1e-3   # Downsample setting for frequent words
    sentences = word2vec.Text8Corpus("seg201708.txt")

    model = word2vec.Word2Vec(sentences, workers=num_workers, \
            size=num_features, min_count = min_word_count, \
            window = context, sg = 1, sample = downsampling)
    model.init_sims(replace=True)
    # 保存模型,供日後使用
    model.save("model201708")
    
    # 可以在加载模型之后使用另外的句子来进一步训练模型
    # model = gensim.models.Word2Vec.load('/tmp/mymodel')
    # model.train(more_sentences)

if __name__ == "__main__":
    main()
  • 参数说明
  • sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或ineSentence构建。
  • sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
  • size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
  • window:表示当前词与预测词在一个句子中的最大距离是多少
  • alpha: 是学习速率
  • seed:用于随机数发生器。与初始化词向量有关。
  • min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
  • max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
  • sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
  • workers参数控制训练的并行数。
  • hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(defau·t),则negative sampling会被使用。
  • negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
  • cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defau·t)则采用均值。只有使用CBOW的时候才起作用。
  • hashfxn: hash函数来初始化权重。默认使用python的hash函数
  • iter: 迭代次数,默认为5
  • trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的
  • sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
  • batch_words:每一批的传递给线程的单词的数量,默认为10000
四、word2vec应用
model = Word2Vec.load('model201708')      #模型讀取方式
model.most_similar(positive=['woman', 'king'], negative=['man']) #根据给定的条件推断相似词
model.doesnt_match("breakfast cereal dinner lunch".split()) #寻找离群词
model.similarity('woman', 'man') #计算两个单词的相似度
model['computer'] #获取单词的词向量
目录
相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 搜索推荐
预训练的词嵌入(Word Embedding)
预训练的词嵌入(Word Embedding)
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
使用 Word2Vec 模型进行情感分析
使用Word2Vec模型进行情感分析包括:数据预处理、训练Word2Vec模型、构建特征向量、情感分析及模型评估与优化。通过这些步骤,结合分类器预测文本情感,提升模型性能和准确性。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
如何使用 Word2Vec 模型进行情感分析?
【10月更文挑战第5天】如何使用 Word2Vec 模型进行情感分析?
|
4月前
|
自然语言处理
【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型
本文探讨了如何提高使用gensim库加载word2vec预训练词向量模型的效率,提出了三种解决方案:保存模型以便快速重新加载、仅保存和加载所需词向量、以及使用Embedding工具库代替word2vec原训练权重。
286 2
|
7月前
|
机器学习/深度学习 自然语言处理 算法
Coggle 30 Days of ML(23年7月)任务六:训练FastText、Word2Vec词向量
Coggle 30 Days of ML(23年7月)任务六:训练FastText、Word2Vec词向量
|
机器学习/深度学习 存储 自然语言处理
【新闻文本分类】(task4)使用gensim训练word2vec
Word2vec即“word to vector”,是一个生成对“词”的向量表达的模型。 想要训练 Word2vec 模型,我们需要准备由一组句子组成的语料库。假设其中一个长度为 T 的句子包含的词有 w1,w2……wt,并且我们假定每个词都跟其相邻词的关系最密切。
582 0
【新闻文本分类】(task4)使用gensim训练word2vec
|
机器学习/深度学习 自然语言处理 算法
深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}
深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}
深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}
|
机器学习/深度学习 自然语言处理 索引
瞎聊机器学习——从词袋模型到word2vec
瞎聊机器学习——从词袋模型到word2vec
|
机器学习/深度学习 存储 自然语言处理
基于 word2vec TextCNN 的新闻文本分类
基于 word2vec TextCNN 的新闻文本分类
363 0
基于 word2vec TextCNN 的新闻文本分类
|
机器学习/深度学习 自然语言处理 算法
GPT-3 vs Bert vs GloVe vs Word2vec 文本嵌入技术的性能对比测试
本文将GPT3与三种传统文本嵌入技术GloVe、Word2vec(Mikolov ,2013 年)和 BERT生成的嵌入进行性能的简单对比。
659 0
GPT-3 vs Bert vs GloVe vs Word2vec 文本嵌入技术的性能对比测试