应用统计学与R语言实现学习笔记(二)——数据收集

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ESA_DSQ/article/details/71176846 Chapter 2 Data Collection本篇是第二章,内容是数据收集。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ESA_DSQ/article/details/71176846

Chapter 2 Data Collection

本篇是第二章,内容是数据收集。

1.数据来源

做科学研究离不开数据,而数据的来源有哪些呢?
这里比较简单地将数据来源分为两类:直接(一手)数据和间接(二手)数据。
直接数据的数据获取来源包括:观测、调查、实验。
间接数据的数据获取来源包括:出版物、互联网等。
接下来分别谈谈这几个来源。
观测——自然科学里有观测,如气象气候、植物生长期等,社会科学同样有观测,譬如像街区人的观测等。观测的数据可以说是纯粹第一手数据,在研究中是很宝贵的数据,但是很容易受到观测记录员主观因素的影响。
调查——自然科学里的调查(室外样品采集,环境状况调查)一般是跟室内实验相结合,而社会科学的调查会更丰富,如典型的问卷调查、访谈、座谈会等。
实验——实验是自然科学的核心,这里就不详述了(比如:土壤理化性质分析、植物生态生理特性分析)。不过近年来随着学科交叉增多,社会科学也开始更多地引入实验的方法(以笔者另一门公选课《初级社会网络》为例,耶鲁大学的社会心理学家米尔格兰姆(Stanley Milgram)就设计了一个连锁信件实验,这就是著名的六度分割理论的由来)。
当然除了以上三种,我认为在现在的大数据时代,还存在一些新的直接数据来源。

  • 物联网(Interest of Thing,IOT),以各类传感器(RFID、红外感应系统、GPS、通量塔等)为代表,代表数据就是如今火热的大数据——如RFID记录数据、浮动车与出租车GPS轨迹数据、通量塔测量的NEE等。
  • 遥感(Remote Sensing,RS),某种程度上,遥感也是靠传感器接收数据,但是它与物联网还是有所差别,故单列出来。作为地学和生态学背景(尤其是GIS和RS相关方向的)的学生,对遥感会非常熟悉。遥感的特征就是,可以大范围快速获取地表信息数据(譬如地形、地表温度、气溶胶、albedo等,当然这些都需要进行反演等)。

总的来说,观测在自然科学和社会科学中都有渗透较多,但是观测往往受到记录人员主观因素影响导致误差。而且观测的数据结构一般来说呈现非结构化的特征。调查在社会科学中有较多应用,自然科学中较少,而实验则是在自然科学中应用广泛,社会科学则应用较少。这两类的实质是类似的,需要提前设计好调查的大纲或者实验方案,然后按照设计好的大纲和方案进行调查和实验。也因此这两类数据结构化特征比较明显。
所谓的间接数据就是指已经经过他人整理的相关数据。这边列出来的主要包括:
出版物:统计年鉴、书籍、论文等。统计年鉴是大部分社会科学相关研究的重要数据来源,这边就不详述了。书籍对于很多如社会研究的文本分析是重要的数据来源。论文作为数据,是近年来兴起的文献计量学的典型数据。此外对Meta分析,论文里的数据则是重要来源。
互联网:百度指数、阿里指数、大众点评等数据。
互联网数据可以利用网络爬虫获取。
总的来说,间接数据易于获取,作用广泛,但使用的时候需要控制数据质量以及引用。

2.调查设计

这边主要介绍的是数据的调查方式、调查方案的结构和设计以及调查问卷设计。
(1)数据的调查方式
数据的调查方式一般而言是遵循统计学规律的(我们称之为统计调查方式),这里列举了我国统计调查的常用方式:普查(人口普查、农业普查、甚至到最近刚刚发布成果的全国第一次地理国情普查)、抽样调查(概率抽样、非概率抽样,具体后面第三章会详述)、统计报表(统计公报)。
而除了以上之外,当我们需要自己收集直接数据的时候又可以分为以下几种:
询问调查类:

  • 访问调查
  • 邮寄调查
  • 电话调查
  • 电脑辅助
  • 座谈会
  • 个别深访

观察实验

  • 观察
  • 实验

(2)调查方案的结构和设计
如何做调查?是很多人在科学研究中的第一道难关。这里给出一个关于做调查的普遍步骤流程图:

Created with Raphaël 2.1.0 确定调查目的(Define the issue) 确定感兴趣的总体和抽样单元(Define the population interest and sampling unit) 规范调查问题(Formulate survey questions) 构建抽样框(Construct sampling frame) 选择样本(Select sample) 收集数据(Collect data) 分析数据(Analyze data)

那么调查方案又是什么呢?我认为调查方案就是调查的策划书。明确你调查的一些目的、对象、项目以及调查方法等。一般结构如下:

  • 调查目的
  • 调查对象调查单位
  • 调查项目
  • 其他

(3)调查问卷设计
最后这部分是谈谈调查问卷设计的一些内容(包括笔者自己的一些经验)。
问卷结构

  • 开头部分(问候语、填写说明、问卷编号 )
  • 甄别部分
  • 主体部分
  • 背景部分

其他部分就不详述了,甄别部分一般是针对过滤的问题,就是不符合条件的即可跳过部分调查题目。接下来主要针对主体部分简单介绍。
主体部分其实就是问卷主要调查的部分。一般来说要注意一下几点。

  • 提问内容尽可能简短
  • 用词准确通俗(可按6W原则推敲:Who,Where,When,Why,What,How)
  • 一项提问只包括一项内容
  • 避免诱导性提问、否定形式提问、敏感性问题

而问题则又可以分为两大类:开放性问题(自由回答型)和封闭性问题(选择回答型)。
封闭性问题包括了二项选择、多项选择(单项、多项、限制选择)、顺序选择法、评定尺度法、双向列联表法。

  • 开放性问题——一般就是可以随便答,这类数据一般是问卷者的主观感受,不会受客观影响。但是最大的问题在于数据收集呈现非结构化特征,多以文本形式存在。研究时必须通过重编码、文本分析等方法。
  • 封闭性问题——相当于是选择题或者填空题。二项选择就是,只有两个选项(A或B);多项选择则是有多个选项,可以选至少一个(一个为单项、一个以上且不限制选择的数量为多项、一个以上且限制选择的数量为限制);顺序选择法,就是给出多个选项,让你按照自己的认识对选项进行排序;评定尺度法,给出多个选项且是有等级划分的(如很差,差,一般,好,很好)进行选择;双向列联表法,将两类不同问题综合到一起,用表格形式,横向为一类问题,纵向为一类问题。

从笔者的经验来说,在设置问卷的时候,必须要先从自己想研究的问题出发,思索如何用数据分析证明自己的结论,然后大致思索需要用来分析的统计方法与统计指标,然后对应选择问题的形式,因为不同的问题形式对应的数据结构大不相同,而且统计方法也不尽相同。
最后的最后安利大家一个软件:Survey123 for ArcGIS
这是由esri北京研发中心开发的一款外业数据收集软件——获得“问卷好帮手”称号的application。

http://www.esri.com/products/survey123

主要包括了桌面端Survey123 connect和移动端Survey123 app两大软件。可以简便地建立问卷、分享问卷、搜集数据、分析数据,同时采集时受访者的GPS位置也将被记录。具体教程参照如下网址。

http://doc.arcgis.com/zh-cn/survey123/

3.数据质量

采集数据的时候必须考虑的就是数据的质量,即降低采集数据时产生误差。
科学研究中的数据误差无可避免,而误差的来源主要包括:抽样误差、非抽样误差。
抽样误差,在抽样方式确定时就无法避免,具体的方法可能还是统计学万能解药———增加样本量。
非抽样误差则包括了如下的内容:

  • 抽样框误差
  • 回答误差
  • 无回答误差
  • 调查员误差

抽样框误差——其实就是抽取的样本无法代表总体;回答误差和无回答误差都是由于受访者导致的错误,而调查员误差则无须再介绍,即采集者自身的误差。
那么控制误差的方法无非就在于样本大小以及合适的数据框(针对非抽样误差和抽样框误差),靠重访来进行修正(回答误差和无回答误差),调查员误差则需要对调查员进行培训。
当然这里还得普及一个概念,在统计学里面,precision(精度)和accuracy(准确性)是不相同的。中文里面往往因为两个单词都翻译成精度,事实上这两个词指的是不一样的内容。二者的区别可以看下面的图。

这里写图片描述

这里做个简单的解释,事实上就是我们研究事物是个无法穷尽的总体,因此我们只能进行抽样调查,那么多次抽样调查研究之后,我们可以得到每次抽样调查的均值(也可以是其他统计量),在图中就是蓝色的点,那么在靶中心的绿色部分,可以认为是总体的真正均值。那么也就是说高精度一般指的是,我们的样本数据自身的变异性很小,也就是说,我们做了N次抽样调查,而每次抽样调查的样本均值基本是稳定的。我们抽的N次都是相近的数据,也就是说我们的抽样误差尽可能小了(因为抽了N次数据变化不会太大)。而高准确性一般指的是,我们N次抽样的样本数据的平均值与总体数据差异很小。也就是说我们的N次样本的均值与总体均值很接近,也就是说我们的非抽样误差尽可能小了(因为N次数据平均值与总体均值差异较小,说明我们抽的样本能够反映总体均值的特征)。
最后,总结下数据质量的控制要求:

  • 精度(precision): 最低的抽样误差或随机误差
  • 准确性(accuracy): 最小的非抽样误差或偏差
  • 关联性: 满足用户决策、 管理和研究的需要
  • 及时性: 在最短的时间里取得并公布数据
  • 一致性: 保持时间序列的可比性
  • 最低成本: 以最经济的方式取得数据
目录
相关文章
|
2月前
|
存储 数据可视化 数据挖掘
R语言在生物信息学中的应用
【10月更文挑战第21天】生物信息学是生物学、计算机科学和信息技术相结合的交叉学科,主要研究生物大分子信息的存储、处理、分析和解释。R语言作为一种强大的统计分析工具,被广泛应用于生物信息学领域。本文将介绍R语言在生物信息学中的应用,包括基因组学、转录组学、蛋白质组学、代谢组学等方面,帮助读者了解R语言在生物信息学中的重要性和应用前景。
91 4
|
2月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
116 3
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
61 2
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
|
机器学习/深度学习 资源调度 算法
R语言逻辑回归与分类模型的深度探索与应用
【8月更文挑战第31天】逻辑回归作为一种经典的分类算法,在R语言中通过`glm()`函数可以轻松实现。其简单、高效且易于解释的特点,使得它在处理二分类问题时具有广泛的应用价值。然而,值得注意的是,逻辑回归在处理非线性关系或复杂交互作用时可能表现不佳,此时可能需要考虑其他更复杂的分类模型。
|
4月前
|
数据挖掘
R语言方差分析(ANOVA):理解与应用
【8月更文挑战第31天】ANOVA是一种强大的统计方法,用于比较三个或更多组之间的均值差异。在R语言中,我们可以轻松地使用`aov()`函数进行ANOVA分析,并通过后置检验(如TukeyHSD检验)来进一步分析哪些组之间存在显著差异。ANOVA在多个领域都有广泛的应用,是数据分析中不可或缺的工具之一。
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
60 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化