学习一个工具的最好途径,就是使用它。这就好比《极品飞车》玩得好的同学,未必真的会开车,要学习车的驾驶技能,就必须用手触摸方向盘、用脚感受刹车与油门的力道。在IT领域,在深入了解一个系统的原理、实现细节之前,应当先准备好它的运行环境或者源码阅读环境。如果能在实际环境下安装和运行Spark,显然能够提升读者对于Spark的一些感受,对系统能有个大体的印象,有经验的工程师甚至能够猜出一些Spark在实现过程中采用的设计模式、编程模型。
考虑到大部分公司在开发和生产环境都采用Linux操作系统,所以笔者选用了64位的Linux。在正式安装Spark之前,先要找台好机器。为什么?因为笔者在安装、编译、调试的过程中发现Spark非常耗费内存,如果机器配置太低,恐怕会跑不起来。Spark的开发语言是Scala,而Scala需要运行在JVM之上,因而搭建Spark的运行环境应该包括JDK和Scala。
本文只介绍最基本的与Spark相关的准备工作,至于Spark在实际生产环境下的配置,则需要结合具体的应用场景进行准备。
安装JDK
自Spark2.0.0版本开始,Spark已经准备放弃对Java 7的支持,所以我们需要选择Java 8。我们还需要使用命令getconf LONG_BIT查看linux机器是32位还是64位,然后下载相应版本的JDK并安装。
下载地址:
http://www.oracle.com/technetwork/java/javase/downloads/index.html。
配置环境:
cd ~
vim .bash_profile
添加如下配置:
exportJAVA_HOME=/opt/java
exportPATH=$PATH:$JAVA_HOME/bin
exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
输入以下命令使环境变量快速生效:
source .bash_profile
安装完毕后,使用java –version命令查看,确认安装正常,如图1所示。
图1 查看java安装是否正常
安装Scala
由于从Spark 2.0.0开始,Spark默认使用Scala 2.11来编译、打包,不再是以前的Scala 2.10,所以我们需要下载Scala 2.11。
下载地址:
http://www.scala-lang.org/download/
选择Scala 2.11的版本进行下载,下载方法如下:
wget https://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz
移动到选好的安装目录,例如:
mv scala-2.11.8.tgz~/install/
进入安装目录,执行以下命令:
chmod 755scala-2.11.8.tgz
tar -xzvfscala-2.11.8.tgz
配置环境:
cd ~
vim .bash_profile
添加如下配置:
exportSCALA_HOME=$HOME/install/scala-2.11.8
exportPATH=$SCALA_HOME/bin:$PATH
输入以下命令使环境变量快速生效:
source .bash_profile
安装完毕后键入scala,进入scala命令行以确认安装正常,如图2所示。
图2 进入Scala命令行
安装Spark
Spark进入2.0时代之后,目前一共有两个大的版本:一个是2.0.0,一个是2.1.0。本书选择2.1.0。
下载地址:
http://spark.apache.org/downloads.html
下载方法如下:
wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.6.tgz移动到选好的安装目录,如:
mv spark-2.1.0-bin-hadoop2.6.tgz~/install/
进入安装目录,执行以下命令:
chmod 755 spark-2.1.0-bin-hadoop2.6.tgz
tar -xzvf spark-2.1.0-bin-hadoop2.6.tgz
配置环境:
cd ~
vim .bash_profile
添加如下配置:
export SPARK_HOME=$HOME/install/spark-2.1.0-bin-hadoop2.6
exportPATH=$SPARK_HOME/bin:$PATH
输入以下命令使环境变量快速生效:
source .bash_profile
安装完毕后键入spark-shell,进入scala命令行以确认安装正常,如图3所示。
图3 执行spark-shell进入Scala命令行
有了对spark运行环境的准备,下面就可以来看看《Spark2.1.0之初体验》
想要对Spark源码进行阅读的同学,可以看看《Spark2.1.0之代码结构及载入Ecplise方法》