Spark2.1.0之运行环境准备

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beliefer/article/details/80042229        学习一个工具的最好途径,就是使用它。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beliefer/article/details/80042229

       学习一个工具的最好途径,就是使用它。这就好比《极品飞车》玩得好的同学,未必真的会开车,要学习车的驾驶技能,就必须用手触摸方向盘、用脚感受刹车与油门的力道。在IT领域,在深入了解一个系统的原理、实现细节之前,应当先准备好它的运行环境或者源码阅读环境。如果能在实际环境下安装和运行Spark,显然能够提升读者对于Spark的一些感受,对系统能有个大体的印象,有经验的工程师甚至能够猜出一些Spark在实现过程中采用的设计模式、编程模型。

       考虑到大部分公司在开发和生产环境都采用Linux操作系统,所以笔者选用了64位的Linux。在正式安装Spark之前,先要找台好机器。为什么?因为笔者在安装、编译、调试的过程中发现Spark非常耗费内存,如果机器配置太低,恐怕会跑不起来。Spark的开发语言是Scala,而Scala需要运行在JVM之上,因而搭建Spark的运行环境应该包括JDK和Scala。

       本文只介绍最基本的与Spark相关的准备工作,至于Spark在实际生产环境下的配置,则需要结合具体的应用场景进行准备。

安装JDK

     自Spark2.0.0版本开始,Spark已经准备放弃对Java 7的支持,所以我们需要选择Java 8。我们还需要使用命令getconf LONG_BIT查看linux机器是32位还是64位,然后下载相应版本的JDK并安装。

下载地址:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

配置环境:

cd ~

vim .bash_profile

添加如下配置:

exportJAVA_HOME=/opt/java

exportPATH=$PATH:$JAVA_HOME/bin

exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

输入以下命令使环境变量快速生效:

source .bash_profile

安装完毕后,使用java –version命令查看,确认安装正常,如图1所示。


图1 查看java安装是否正常

安装Scala

       由于从Spark 2.0.0开始,Spark默认使用Scala 2.11来编译、打包,不再是以前的Scala 2.10,所以我们需要下载Scala 2.11。

    下载地址:

    http://www.scala-lang.org/download/

选择Scala 2.11的版本进行下载,下载方法如下:

wget https://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz

移动到选好的安装目录,例如:

mv scala-2.11.8.tgz~/install/

进入安装目录,执行以下命令:

chmod 755scala-2.11.8.tgz

tar -xzvfscala-2.11.8.tgz

配置环境:

cd ~

vim .bash_profile

添加如下配置:

exportSCALA_HOME=$HOME/install/scala-2.11.8

exportPATH=$SCALA_HOME/bin:$PATH

输入以下命令使环境变量快速生效:

source .bash_profile

安装完毕后键入scala,进入scala命令行以确认安装正常,如图2所示。


图2 进入Scala命令行

安装Spark

    Spark进入2.0时代之后,目前一共有两个大的版本:一个是2.0.0,一个是2.1.0。本书选择2.1.0。

    下载地址:

http://spark.apache.org/downloads.html

下载方法如下:

wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.6.tgz移动到选好的安装目录,如:

mv spark-2.1.0-bin-hadoop2.6.tgz~/install/

进入安装目录,执行以下命令:

chmod 755 spark-2.1.0-bin-hadoop2.6.tgz

tar -xzvf spark-2.1.0-bin-hadoop2.6.tgz

配置环境:

cd ~

vim .bash_profile

添加如下配置:

    export SPARK_HOME=$HOME/install/spark-2.1.0-bin-hadoop2.6

    exportPATH=$SPARK_HOME/bin:$PATH

输入以下命令使环境变量快速生效:

source .bash_profile

安装完毕后键入spark-shell,进入scala命令行以确认安装正常,如图3所示。


图3 执行spark-shell进入Scala命令行


有了对spark运行环境的准备,下面就可以来看看《Spark2.1.0之初体验

想要对Spark源码进行阅读的同学,可以看看Spark2.1.0之代码结构及载入Ecplise方法

关于《Spark内核设计的艺术 架构设计与实现

经过近一年的准备,基于Spark2.1.0版本的《 Spark内核设计的艺术 架构设计与实现》一书现已出版发行,图书如图:


纸质版售卖链接如下:
电子版售卖链接如下:
相关文章
|
SQL 分布式计算 Java
spark入门(2.0.1版本):概述,下载,编译,运行环境及实例运行
spark入门(2.0.1版本):概述,下载,编译,运行环境及实例运行
190 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
143 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
73 0
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
48 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
104 0
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
94 6
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
117 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
86 1