Java Hashtable类源码解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:

老生常谈的问题——Hashtable和HashMap有什么区别

大家一般都能说出几条,比如Hashtable是线程安全的,不支持null作为key和value值等等。那么,要仔细了解这个问题还是直接从Hashtable的源码入手。

先列一下我找到的区别:

  1. 继承类不同,Hashtable继承的是Dictionary这是一个废弃类,而HashMap继承的是AbstractMap
  2. 产生时间不同,Hashtable自JDK1.0版本就有了,而HashMap是JDK1.2才加入的,同时Hashtable可能因为历史原因并不是我们习惯的驼峰法命名的
  3. Hashtable比HashMap多提供了elments()方法用于返回此Hashtable中的value的枚举
  4. Hashtable既不支持null key也不支持null value
  5. Hashtable的默认大小是11,扩大的逻辑是*2+1,对于给定大小不会做扩展。而HashMap是16,扩大时*2,初始大小会转换成恰好大于等于的2的指数次幂
  6. Hashtable中的遍历操作是从高位开始的,而HashMap是从低位开始
  7. Hashtable处理冲突元素时插入到链表头部,而HashMap是插入到链表尾部
  8. Hashtable的hashcode方法计算所有entry的hashcode总和,HashMap没有这样的方法,同时HashMap在计算hash值时会用高位右移16位与低位异或来打散散列值,避免位与操作造成冲突过多
  9. Hashtable每一次定位都要做一次完整的除法取余数,而HashMap使用的是与数组大小-1的位与计算,效率高很多
  10. Hashtable的方法都加上了synchronized是线程安全的方法,而HashMap不是,所以单线程时前者额外开销很大。JDK8以后Hashtable也用了modCount来保证在遍历过程中其他线程修改对象的fast-fail机制。但是,即使是多线程环境下,依然应该优先选择对HashMap进行一些特殊处理而不是用Hashtable,因为所有方法都加上synchronized的程序并发性很差。实际上就我个人经验而言,在一些特定的具体情况下,比如大规模写入key值连续数据(出自今年的第四届阿里中间件性能挑战赛复赛题),链表法解决冲突性能可能不如开放地址法,即使加上了红黑树。所以说对于一些对极致压榨性能的情况下,适当的可以抛弃一些通用的集合而尝试自由发挥造轮子。

首先从最上方的注释中可以看到Hashtable自JDK1.0版本就有了,而HashMap是JDK1.2才加入的。观察一下类的声明,我们可以看到他们继承的类也是不同的,Hashtable继承的是Dictionary, Dictionary这个类从注释上写着已经是obsolete被废弃了,所以连带Hashtable也基本不用了 Hashtable 也有元素个数,数组大小,负载因子这些属性,不用元素个数用的是 count 不是 size 。也是使用链表法来解决冲突。
public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
构造函数可以看出默认大小是 11,同时初始大小给定多少初始数组就多大,不会做扩展到2的指数次幂这样的操作。 threshold=initialCapacity*loadFactor 这点和 HashMap 相同。
    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry<?,?>[initialCapacity];
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
    }

    public Hashtable() {
        this(11, 0.75f);
    }
contains 这个方法是从表尾开始向前搜索的,同时也没有使用 ==来比较
    public synchronized boolean contains(Object value) {
        if (value == null) {
            throw new NullPointerException();
        }

        Entry<?,?> tab[] = table;
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) {
                    return true;
                }
            }
        }
        return false;
    }
containsKey 可以看出, Hashtableindex计算逻辑是使用key.hashCode()的后31位然后除以tab.length 取余数 HashMap 的那种按位与的操作仅当操作数低位全是 1 时才等价为取余操作,也就是 2 的指数次幂 -1 才可成立,这样做计算速度比除法快很多,不过冲突数量会增加,所以加入了一些打散的设计比如hashCode高位与低位异或。
    public synchronized boolean containsKey(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }
 扩展方法rehash的 扩大方式是旧数组大小*2+1 ,而HashMap是*2,要重新计算每一个的index所以效率低,同时冲突时将 后面的元素插入到前面元素的前一位 ,所以会改变顺序 
    protected void rehash() {
        int oldCapacity = table.length;
        Entry<?,?>[] oldMap = table;

        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1;//新大小=旧大小*2+1
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];//创建一个新的数组

        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        table = newMap;

        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;

                int index = (e.hash & 0x7FFFFFFF) % newCapacity;//重新计算每一个元素的index
                e.next = (Entry<K,V>)newMap[index];//前后元素有冲突时,后面的元素插入到前面元素的前面
                newMap[index] = e;
            }
        }
    }
对于插入结点同样要先检查是否存在key值相同的点,存在则不插入,然后检查是否需要扩展数组,插入时如果发生冲突,也是将要 插入的元素放在链表的首位 ,而putVal方法是放入尾部的。同时,可以看到Hashtable是 不支持null作为key或value值的
    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {//value为null直接报错
            throw new NullPointerException();
        }

        // Makes sure the key is not already in the hashtable.
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();//若key为null这里会报错
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
        for(; entry != null ; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }

        addEntry(hash, key, value, index);
        return null;
    }
    private void addEntry(int hash, K key, V value, int index) {
        modCount++;

        Entry<?,?> tab[] = table;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();

            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
    }
Hashtable的 hashcode方法计算所有entry的hash值总和
public synchronized int hashCode() {
        int h = 0;
        if (count == 0 || loadFactor < 0)
            return h;  // Returns zero

        loadFactor = -loadFactor;  // Mark hashCode computation in progress
        Entry<?,?>[] tab = table;
        for (Entry<?,?> entry : tab) {
            while (entry != null) {
                h += entry.hashCode();
                entry = entry.next;
            }
        }

        loadFactor = -loadFactor;  // Mark hashCode computation complete

        return h;
    }
elements 这个方法是Hashtable多出来的, 返回所有value值的枚举
    public synchronized Enumeration<V> elements() {
        return this.<V>getEnumeration(VALUES);
    }
我们可以注意到,Hashtable的 方法都加上了synchronized,他们是线程安全的,但是对于本身是线程安全的情况就会大幅度影响性能,JDK8开始引入modCount来作为fast-fail机制,防止其他线程的非synchronzied方法对Hashtable进行修改。
相关文章
|
4天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
16 2
|
8天前
|
Java
轻松上手Java字节码编辑:IDEA插件VisualClassBytes全方位解析
本插件VisualClassBytes可修改class字节码,包括class信息、字段信息、内部类,常量池和方法等。
54 6
|
5天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java的集合框架中,Set接口以其“无重复”特性著称。本文解析了Set的实现原理,包括HashSet和TreeSet的不同数据结构和算法,以及如何通过示例代码实现最佳实践。选择合适的Set实现类和正确实现自定义对象的hashCode()和equals()方法是关键。
18 4
|
4天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
60 0
|
1月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
80 0
|
17天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
37 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
53 5

推荐镜像

更多