利用face_recognition库裁取人脸

简介: 1 from PIL import Image 2 import face_recognition 3 4 # Load the jpg file into a numpy array 5 image = face_recognition.

 1 from PIL import Image
 2 import face_recognition
 3 
 4 # Load the jpg file into a numpy array
 5 image = face_recognition.load_image_file(".jpg")
 6 
 7 # Find all the faces in the image
 8 face_locations = face_recognition.face_locations(image)
 9 
10 print("I found {} face(s) in this photograph.".format(len(face_locations)))
11 
12 for face_location in face_locations:
13 
14     # Print the location of each face in this image
15     top, right, bottom, left = face_location
16     print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))
17 
18     # You can access the actual face itself like this:
19     face_image = image[top:bottom, left:right]
20     pil_image = Image.fromarray(face_image)
21     pil_image.show()

 

 

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Hugging Face 的应用
Hugging Face 是一家专注于开发机器学习应用工具的公司,以其用于自然语言处理的 Transformers 库而闻名,同时提供了一个平台让用户分享机器学习模型和数据集。Transformers 库支持多种任务,如文本分类、生成、总结等,并兼容 PyTorch、TensorFlow 等框架。Hugging Face 还推出了 Text Generation Inference 工具包,用于高效部署大规模语言模型。在国内,百度千帆和魔搭社区等平台也在提供类似的服务和支持。
87 11
|
27天前
|
机器学习/深度学习 编解码 定位技术
【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation
UniverSeg是一种用于医学图像分割的小样本学习方法,通过大量医学图像数据集的训练,实现了对未见过的解剖结构和任务的泛化能力。该方法引入了CrossBlock机制,以支持集和查询集之间的特征交互为核心,显著提升了分割精度。实验结果显示,UniverSeg在多种任务上优于现有方法,特别是在任务多样性和支持集多样性方面表现出色。未来,该方法有望扩展到3D模型和多标签分割,进一步提高医学图像处理的灵活性和效率。
17 0
【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation
|
27天前
|
机器学习/深度学习 人工智能 文件存储
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
本文介绍了一种名为HyperSegNAS的新方法,该方法结合了一次性神经架构搜索(NAS)与3D医学图像分割,旨在解决传统NAS方法在3D医学图像分割中计算成本高、搜索时间长的问题。HyperSegNAS通过引入HyperNet来优化超级网络的训练,能够在保持高性能的同时,快速找到适合不同计算约束条件的最优网络架构。该方法在医疗分割十项全能(MSD)挑战的多个任务中展现了卓越的性能,特别是在胰腺数据集上的表现尤为突出。
19 0
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
|
5月前
get_frontal_face_detector
【6月更文挑战第20天】
86 5
|
人工智能 自然语言处理 搜索推荐
Hugging Face有哪些大模型
Hugging Face的大语言模型有很多,比如**RoBERTa**、**DistilBERT**、**BERT-Large**、**XLNet**、**ELECTRA**等
213 1
|
机器学习/深度学习 Serverless 计算机视觉
MTCNN详细解读
MTCNN详细解读
120 0
|
编解码 资源调度 自然语言处理
【计算机视觉】Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP(OVSeg)
基于掩码的开放词汇语义分割。 从效果上来看,OVSeg 可以与 Segment Anything 结合,完成细粒度的开放语言分割。
|
数据采集 机器学习/深度学习 计算机视觉
【Computer Vision】图像数据预处理详解
【Computer Vision】图像数据预处理详解,基于百度飞桨开发,参考于《机器学习实践》所作。
299 1
【Computer Vision】图像数据预处理详解
|
机器学习/深度学习 计算机视觉 Python
基于face_recognition实现人脸识别
## 简介 我们这次使用基于开源项目face_recognition库来实现人脸识别,首先介绍一下这个项目吧。 使用世界上最简单的人脸识别库从 Python 或命令行识别和操作人脸。 使用dlib使用深度学习构建的最先进的人脸识别技术构建。该模型在 Wild基准的 Labeled Faces 上的准确率为 99.38% 。 这使得我们可以直接调用这个库来进行人脸识别而不用自己编写程序进行深度学习。这是该项目的[github地址](https://github.com/ageitgey/face_recognition)
338 1
|
机器学习/深度学习 人工智能 计算机视觉
Python实现人脸识别功能,face_recognition的使用 | 机器学习
Python实现人脸识别功能,face_recognition的使用 | 机器学习
Python实现人脸识别功能,face_recognition的使用 | 机器学习