CV之Face Detection:Face Detection人脸检测原理及其常见分类技术

简介: CV之Face Detection:Face Detection人脸检测原理及其常见分类技术

人脸探测的原理

线性分类器

image.pngimage.png

影像金字塔

image.png

image.png

滑动窗格

image.png



相关文章
|
3月前
|
机器学习/深度学习 编解码 定位技术
【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation
UniverSeg是一种用于医学图像分割的小样本学习方法,通过大量医学图像数据集的训练,实现了对未见过的解剖结构和任务的泛化能力。该方法引入了CrossBlock机制,以支持集和查询集之间的特征交互为核心,显著提升了分割精度。实验结果显示,UniverSeg在多种任务上优于现有方法,特别是在任务多样性和支持集多样性方面表现出色。未来,该方法有望扩展到3D模型和多标签分割,进一步提高医学图像处理的灵活性和效率。
55 0
【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation
|
3月前
|
机器学习/深度学习 人工智能 文件存储
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
本文介绍了一种名为HyperSegNAS的新方法,该方法结合了一次性神经架构搜索(NAS)与3D医学图像分割,旨在解决传统NAS方法在3D医学图像分割中计算成本高、搜索时间长的问题。HyperSegNAS通过引入HyperNet来优化超级网络的训练,能够在保持高性能的同时,快速找到适合不同计算约束条件的最优网络架构。该方法在医疗分割十项全能(MSD)挑战的多个任务中展现了卓越的性能,特别是在胰腺数据集上的表现尤为突出。
34 0
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
|
5月前
|
机器学习/深度学习 编解码 自然语言处理
【文献学习】An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
本文介绍了如何使用纯Transformer模型进行图像识别,并讨论了模型的结构、训练策略及其在多个图像识别基准上的性能。
164 3
|
7月前
get_frontal_face_detector
【6月更文挑战第20天】
127 5
|
7月前
|
算法 计算机视觉
图像处理之简单脸谱检测算法(Simple Face Detection Algorithm)
图像处理之简单脸谱检测算法(Simple Face Detection Algorithm)
42 0
|
机器学习/深度学习 计算机视觉
【计算机视觉 | 目标检测】Open-Vocabulary Object Detection Using Captions
出发点是制定一种更加通用的目标检测问题,目的是借助于大量的image-caption数据来覆盖更多的object concept,使得object detection不再受限于带标注数据的少数类别,从而实现更加泛化的object detection,识别出更多novel的物体类别。
|
机器学习/深度学习 存储 机器人
LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray Image
高效的特征提取EFE模块作为主干单元,它可以用很少的参数和低计算量提取有意义的特征,有效地学习表征。大大减少了特征提取的消耗
171 0
|
机器学习/深度学习 传感器 编解码
CV学习笔记-立体视觉(点云模型、Spin image、三维重建)
CV学习笔记-立体视觉(点云模型、Spin image、三维重建)
1012 0
CV学习笔记-立体视觉(点云模型、Spin image、三维重建)
|
机器学习/深度学习 编解码 算法
使用EasyCV Mask2Former轻松实现图像分割
EasyCV可以轻松预测图像的分割谱以及训练定制化的分割模型。本文主要介绍如何使用EasyCV实现实例分割、全景分割和语义分割,及相关算法思想。
使用EasyCV Mask2Former轻松实现图像分割
|
机器学习/深度学习 传感器 编解码
Text to image论文精读 GAN-CLS和GAN-INT:Generative Adversarial Text to Image Synthesis生成性对抗性文本图像合成(文本生成图像)
这是一篇用GAN做文本生成图像(Text to Image、T2I)的论文,文章在2016年由Reed等人发布,被ICML会议录取。可以说是用GAN做文本生成图像的开山之作。 论文链接:https://arxiv.org/pdf/1605.05396.pdf 代码链接: https://github.com/zsdonghao/text-to-image 本篇文章是精读这篇论文的报告,包含一些个人理解、知识拓展和总结。
Text to image论文精读 GAN-CLS和GAN-INT:Generative Adversarial Text to Image Synthesis生成性对抗性文本图像合成(文本生成图像)

热门文章

最新文章