Python 基于OpenCV+face_recognition实现人脸

简介: q

与上篇通过摄像头动态识别人脸一样,先下载好opencv-python、face-recognition,这里因为使用的是照片对比的方式,特意使用tkinter画了一个简单的GUI方便操作。

在python 3以上版本tkinter是环境自带的,所以这里不需要安装

2.代码示例
import os
import cv2
import numpy as np
import face_recognition
import tkinter as tk
import tkinter.filedialog
from PIL import Image,ImageTk

classNames=[]
img_path='Picture'
img_recognition_path='Recognition'
existsEncodeingList=[]

对人脸集合进行编码进行处理

def findEncodeings(images):

for img in images:
    #灰度处理
    img=cv2.cvtColor(src=img,code=cv2.COLOR_BGR2RGB)
    #face_encodings对图片对象a_images进行编码并返回数组0位置编码结果
    encode=face_recognition.face_encodings(img)[0]
    existsEncodeingList.append(encode)

获取当前存储的人脸编码集合

def findExistsEncodeingList(img_path):

images=[]
#列出已经上传的所有图片
imgList=os.listdir(img_path)
#处理存储的图片得到其人脸编码
for pic in imgList:
    img=cv2.imread('{}/{}'.format(img_path,pic))
    images.append(img)
    classNames.append(os.path.splitext(pic)[0])
findEncodeings(images)

选择并对比图片

def choosepic():

choosepath = tkinter.filedialog.askopenfilename()
path.set(choosepath)
img_open = Image.open(entry.get()).resize((530,750))
img = ImageTk.PhotoImage(img_open)
lableShowImage.config(image=img)
lableShowImage.image = img
lableShowImage.place(x=30, y=70, width=530, height=750)
faceRecognition(choosepath)

def faceRecognition(choosepath):

frame=cv2.imread(choosepath)
frameRGB=cv2.cvtColor(src=frame,code=cv2.COLOR_BGR2RGB)
#对摄像头读取的检测人脸
facesLocate=face_recognition.face_locations(frameRGB)
#进行特征编码
faceEncoded=face_recognition.face_encodings(frameRGB,facesLocate)
#遍历检测的人脸和库中读取的图片进行对比,计算其相似度
name='unknow'
for (top,right, bottom,left),face_encoding in zip(facesLocate,faceEncoded):
    #进行匹配
    matchs=face_recognition.compare_faces(existsEncodeingList,face_encoding)
    #计算相似度
    distance=face_recognition.face_distance(existsEncodeingList,face_encoding)
    lab='unknow'
    for index, item in enumerate(distance):
       if item<0.5:
            if matchs[index]:
                #得到匹配到的图片名称与相似度值
                lab='name:{}; Similarity:{}'.format(classNames[index],item)
                name=classNames[index]
                break
    #初始化面部捕捉框显示绿色
    color1 =(0,255,0)
    if name =='unknow':
        #未能识别的时候显示蓝色
        color1 =(255,0,0)
    #画面部捕捉框
    cv2.rectangle(img=frame,pt1=(left,top),pt2=(right,bottom),color=color1,thickness=3)
    #在捕捉框上添加匹配到的图片信息
    cv2.putText(frame, lab, (left,top-8),cv2.FONT_HERSHEY_SIMPLEX, 0.7, color1, 2)
    cv2.imwrite('{}/{}.png'.format(img_recognition_path,name),frame)
img_Recognition = Image.open('{}/{}.png'.format(img_recognition_path,name)).resize((530,750))
img = ImageTk.PhotoImage(img_Recognition)
lableShowImage2.config(image=img)
lableShowImage2.image = img
lableShowImage2.place(x=630, y=70, width=530, height=750)

if name == '__main__':

findExistsEncodeingList(img_path)
#生成tk界面 app即主窗口
app = tk.Tk()  
#修改窗口titile
app.title("show pictue")  
#设置主窗口的大小和位置
app.geometry("1200x900+200+50")
#Entry widget which allows displaying simple text.
path = tk.StringVar()
entry = tk.Entry(app, state='readonly', text=path,width = 100)
entry.pack()
#使用Label显示图片
lableShowImage = tk.Label(app)
lableShowImage.pack()
 #使用Label2显示处理后的图片
lableShowImage2 = tk.Label(app)
lableShowImage2.pack()
#选择图片的按钮
buttonSelImage = tk.Button(app, text='choose picture', command=choosepic)
buttonSelImage.pack()
app.mainloop()

3.说明
首先我将需要被识别的人脸的照片预设到项目目录的Picture文件夹下,然后创建一个Recognition目录存放识别过的图片,这样方便在一个界面上展示对比结果照片。

其实对比结果也可以不用存,直接将处理后的图片缓存直接展示在界面上,这里需要改一下此处的代码,将上述代码注释掉,然后换成下面的那行,通过数组直接转成图片

相关文章
|
11月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
261 1
|
计算机视觉 Windows Python
windows下使用python + opencv读取含有中文路径的图片 和 把图片数据保存到含有中文的路径下
在Windows系统中,直接使用`cv2.imread()`和`cv2.imwrite()`处理含中文路径的图像文件时会遇到问题。读取时会返回空数据,保存时则无法正确保存至目标目录。为解决这些问题,可以使用`cv2.imdecode()`结合`np.fromfile()`来读取图像,并使用`cv2.imencode()`结合`tofile()`方法来保存图像至含中文的路径。这种方法有效避免了路径编码问题,确保图像处理流程顺畅进行。
1369 1
|
8月前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
337 10
|
11月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
331 7
|
11月前
|
计算机视觉 Python
python利用pyqt5和opencv打开电脑摄像头并进行拍照
本项目使用Python的PyQt5和OpenCV库实现了一个简单的摄像头应用。用户可以通过界面按钮打开或关闭摄像头,并实时预览视频流。点击“拍照”按钮可以捕捉当前画面并保存为图片文件。该应用适用于简单的图像采集和处理任务。
717 0
python利用pyqt5和opencv打开电脑摄像头并进行拍照
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
12月前
|
机器学习/深度学习 计算机视觉 Python
opencv环境搭建-python
本文介绍了如何在Python环境中安装OpenCV库及其相关扩展库,包括numpy和matplotlib,并提供了基础的图像读取和显示代码示例,同时强调了使用Python虚拟环境的重要性和基本操作。
|
存储 编解码 API
python多种方法压缩图片,opencv、PIL、tinypng、pngquant压缩图片
python多种方法压缩图片,opencv、PIL、tinypng、pngquant压缩图片
868 1
|
算法 定位技术 vr&ar
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
2591 0
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
|
机器学习/深度学习 人工智能 监控
利用Python和OpenCV实现实时人脸识别系统
【8月更文挑战第31天】本文将引导您了解如何使用Python结合OpenCV库构建一个简易的实时人脸识别系统。通过分步讲解和示例代码,我们将探索如何从摄像头捕获视频流、进行人脸检测以及识别特定个体。本教程旨在为初学者提供一条明晰的学习路径,帮助他们快速入门并实践人脸识别技术。

热门文章

最新文章

推荐镜像

更多