【小思考】Python的float转换精度损失所想到的

简介: 首先,为啥会要讨论这个问题。我得为昨天拖了小组后腿深表歉意。其实程序逻辑很快就理通了的,但自己总是会因为各种各样的小问题束缚手脚,看接下来这个图片:稍微有数据敏感性的同学就能看出,中间这么一大堆又是0000又是999还是这么多位的小数,一看就是异常数据。

首先,为啥会要讨论这个问题。

我得为昨天拖了小组后腿深表歉意。其实程序逻辑很快就理通了的,但自己总是会因为各种各样的小问题束缚手脚,看接下来这个图片:

稍微有数据敏感性的同学就能看出,中间这么一大堆又是0000又是999还是这么多位的小数,一看就是异常数据。这块数据的产生,源于代码里对两个字符串做了float转换并相减,导致出现了这种数据异常的错误。那么问题来了,1.这种异常是如何产生的?2.有哪些方法可以解决这种问题呢?3.编程中间还有哪些与这个问题相关的注意事项呢?

第一部分:这种异常是如何产生的呢?

我们先来看演示:

看来,直接输出float型数据,以及对字符串进行的float转换,本身并没有什么问题,那么为什么浮点数相减就会出现这个可恶的小尾巴呢?我们有必要从计算机本身数字加减的机制进行探究。有学习过《计算机组成原理》等基本课程、哪怕只是简单了解计算机内部运行机制的同学都明白,计算机内部的加减乘除都是要把数字转化成为二进制实现的。那么,我们此处的浮点数,也要转换为二进制,才能进行计算。Python内浮点数是用机器上浮点数的本机双精度(64 bit)表示的。提供大约17位的精度和范围从-308到308的指数。和C语言里面的double类型相同【可参考C语言double类型的解释】。

我们来看一个简单的例子。十进制1.1转换成二进制是什么数?十进制整数部分转化成二进制,用短除法处以2倒序取余。小数部分转化为二进制是用乘法乘2正序取整。见下面一个浮点数转二进制数的例子。

1.10整数部分就是1,转换成二进制1(这里整数转二进制不再赘述)
小数部分:0.1
0.1*2=0.2取整数部分0,基数=0.2
0.2*2=0.4取整数部分0,基数=0.4
0.4*2=0.8取整数部分0,基数=0.8
0.8*2=1.6取整数部分1,基数=1.6-1=0.6
0.6*2=1.2取整数部分1,基数=1.2-1=0.2
0.2*2=0.4取整数部分0,基数=0.4
.
.
.
直至基数为0。1.1用二进制表示为:1.000110...xxxx....(后面表示省略)

关于之前的演示,相当于,因为3.4的存储,发生了精度损失(3.5不会,因为3.5的二进制是11.1,补码存储依然不会发生精度损失),所以在相减的时候,发生了一次精度损失,最后结果存储的时候,再次发生一次精度损失。所以,才会出现最后的小尾巴情况。

第二部分:有哪些方法可以解决这个问题呢?

解决这个问题?不存在的,除非是提高精度——让计算机内能够完整的存储数字的二进制(二进制补码)表示,否则的话,只要有精度损失,就指不定什么时候会冒出来小尾巴。我们追求的解决,自然也是从提高精度,和“表面看起来正确”这两条道路去追求。

提高精度——Python本身自带的float已经是可支持浮点数的最高精度形式。当然,这个肯定是不能阻挡我们对更高精度的要求,这里可以自己实现高精度的数据形式,也可以使用Python扩展模块:Decimal。使用Decimal本身需要导入decimal包,初始化decimal数据可以使用整型数据和字符串,而不能使用float型数据,正如之前我们所说的那样,某些浮点数存储会发生精度损失——这意味着float本身就不够精确。

当然,还有很多抖机灵的方法,比如说结果转换成字符串然后再截取?!

你可能体会不到,这个是一种针对数据波动范围相对确定,相当实用的方法——虽然应该没有任何一个脑子正常的程序员会推崇这种方法。这种方法就是追求的“表面上看起来正确”,你看,最后的显示出来的结果不就是-0.1么?

自然,还有print的%精度控制,这里就不赘述。而且也不想详述这个,毕竟这个惊为天人的字符串截取方法,都还是对字符串进行了处理,而%精度控制只是显示的时候做了处理,可真是够“表面”的。

不得不说,也是受这种方法的启发,本人使用的方法,是利用Python int转换“舍去小数点后所有数字”的特点,把原浮点数乘以需要保留精度的位数,然后转换成整数,再除回去,这样就形成了“表面正确”的数据,效果不要太好。

总结一下!解决这个精度损失带来的“恶魔小尾巴”问题,我们大体上有提高数据格式精度和只追求最终显示改变两大思路。

提高数据格式精度:使用扩展包decimal

只追求最终显示改变:printf %精度控制 ,字符串截取指定位数,先移动小数点、转换成整型舍去末尾、再把小数点移动回来。等方法。

第三部分:编程中间还有哪些和这个问题相关的注意事项呢?

这个小尾巴让我可谓一开始是焦头烂额,也严重耽误了小组研究进度。通过我们之前的探究,可以发现,浮点数本身表示由于受计算机限制,经常是不精确的。所以,日常数据中,最好不要用浮点数。

可能有些人觉得精度损失一些没有什么,然而浮点数的精度损失关键时候可不只只是精度损失,甚至会影响流程控制!浮点数不只有Python里面有,咱们用更加基本的C++来说明这个问题:

当精度损失已经让程序的走向开始不符合逻辑的时候,你还会轻视这个问题么?

这里给广大同仁们分享一篇专门讲解浮点数的文章,深入了解,真的有很多可圈可点之处!

深入了解计算机浮点数机制——程序员必备!

目录
相关文章
|
4月前
|
Python
Python中的float语句
Python中的float语句
|
4月前
|
JSON 数据格式 Python
【python】解决json.dump(字典)时报错Object of type ‘float32‘ is not JSON serializable
在使用json.dump时遇到的“Object of type ‘float32’ is not JSON serializable”错误的方法,通过自定义一个JSON编码器类来处理NumPy类型的数据。
198 1
|
5月前
|
存储 Python
语音输入,python数据类型,type()用来查看数据类型,数据类型转换,int(x)转整数,float(x)转换为浮点数,str(x),将对象转为字符串,标识符,标识符不允许使用关键字,关键字参考
语音输入,python数据类型,type()用来查看数据类型,数据类型转换,int(x)转整数,float(x)转换为浮点数,str(x),将对象转为字符串,标识符,标识符不允许使用关键字,关键字参考
|
7月前
|
存储 Python
Python浮点型(float)
【4月更文挑战第9天】Python中的浮点型(float)表示实数,基于IEEE 754双精度标准,约有15-17位十进制精度。创建浮点型变量可通过直接赋值,如`x = 3.14`。支持加减乘除等运算,但运算可能因精度问题产生不精确结果,如`0.1 + 0.2 != 0.3`。可使用`round()`函数四舍五入,或通过`is_close()`函数比较浮点数是否接近。在需要高精度计算时,建议使用`decimal`模块。
128 2
|
7月前
|
Python
Python的整型在计算中的精度可以通过使用二进制或十进制表示来体现
【5月更文挑战第6天】Python整型支持十、二、八、十六进制表示,其中十进制默认,二进制(0b前缀)、八进制(0o前缀)、十六进制(0x前缀)。计算时以二进制精度处理,确保结果准确。例如:123的二进制是0b1111011,八进制是0o173,十六进制是0x7b。
42 0
|
7月前
|
数据可视化 数据处理 索引
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
|
7月前
|
安全 Python
Python系列(16)—— string类型转float类型
Python系列(16)—— string类型转float类型
|
7月前
|
前端开发 Python
Python float(input())的用法,web中的应用
要理解Python中的float(input()),可以分两部分。第一,input()用于获取键盘上的输入,该函数的返回值是一个Python字符串str类型的数据——不过输入的是什么;第二,float()函数用于将传递的参数——这里就是input()的返回值,一个字符串——转换为float浮点数的类型。float()函数转换input()的返回值相对于使用int()可以保留相应的精度。
173 1
|
Python
Python的整型在计算中的精度是如何表示的?
Python的整型在计算中的精度是如何表示的?
79 2
float与double精度丢失问题
float与double精度丢失问题
125 0
下一篇
DataWorks