你的sql查询为什么这么慢?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 做后台开发的程序猿通常需要写各种各样的sql,可很多时候写出来的sql虽然能满足功能性需求,性能上却不尽人意。如果业务复杂,表结构和索引设计又不合理的话,写出来的sql执行时间可能会达到几十甚至上百秒,对于生产环境来说,这是相当恐怖的一件事。

       做后台开发的程序猿通常需要写各种各样的sql,可很多时候写出来的sql虽然能满足功能性需求,性能上却不尽人意。如果业务复杂,表结构和索引设计又不合理的话,写出来的sql执行时间可能会达到几十甚至上百秒,对于生产环境来说,这是相当恐怖的一件事。因此,了解一些常见的mysql优化技巧很有必要。本文将从表结构和索引设计,sql执行原理,sql编写优化3方面进行分析和讲解,希望能对大家有所帮助。

     1、表结构,字段设计是否合理?

           这是最基础也是最容易忽视的一个环节。良好的表结构设计是sql优化的基础,在这个存储廉价,空间足够的时代,设计表的过程中,不一定要完全满足范式理论,我们可以通过适当的冗余设计,避免连表查询,达到以空间来换取时间的目的。设计表的时候,我们会根据业务需求来决定建几个表,表之间通过哪些外键来关联。而且通常需要考虑到数据规模(单表记录数最好不要超过千万,如果超过可能需要分表分区,包括垂直分表和水平分表)、查询更新频率(哪些字段经常用于查询,哪些经常用于更新),各字段的类型和长度取值,在哪些字段上建哪种类型的索引等等。

           比方说,如果你是innodb存储引擎,那么你的主键最好设计成自增的,这样效率最高。因为innodb存储引擎的索引是基于B+树实现,如果采用自增设计,就能快速找到插入节点的位置进行插入或删除,对其他节点影响较小,避免频繁分裂树结构。有的公司设计表的时候喜欢采用UUID的方式来作为主键,这样的好处是数据迁移的时候,主键不会变,能找到对应关系,但是会有2个问题:1、UUID的长度是36位,占用字节较长,尤其对于innoDB来说,建立辅助索引的时候,辅助索引里存储的都是主键的值,这会导致辅助索引占据空间变大。2、UUID是无序的,每次插入或者删除一条记录的时候,为了维持索引的特性,可能会导致节点频繁分裂,这样非常影响效率。

          在设计字段的时候,尽量采用整形的,比如用tinyint 代替char(1),这样便于存储和计算。在满足业务的前提下,长度越短越好,如果有大对象,比如text或blob类型的字段,并且这些字段查询频率较低时,可以考虑拆表来单独存储(也就是垂直分表),避免对主表造成影响。此外,设计表的时候,最好设计为not null,因为允许为null时,mysql还需要有个字节来标识是否是null,而且mysql索引无法存储null,如果在一列允许null 的索引中使用where colum is null,那么mysql是不会走索引的。那如果有的字段就是没值怎么办?可以用空字符串或者0这些代替。

     2、sql执行原理

           写好了sql后,sql是怎么执行的呢?当我们运行sql的时候,会经历客户端发送请求,服务端接受请求并解析sql,生成sql执行计划,执行并将结果返回给客户端这些过程。要优化sql,首先要知道sql到底在哪些环节花了多长时间。这里不去分析网络因素对sql造成的影响,我们只需关注sql生成的执行计划,这个执行计划能很大程度上帮助我们找到优化sql的方向。那怎么看sql的执行计划呢?explain 你的sql。比如在mysql 5.6自带的sakila数据库上执行如下sql:

          

          可以看到有id,select_type,partitions,type,possible_keys等等内容。首先说一下,比较重要的有id,select_type,type(相当重要),key(相当重要),key_len(可能重要),extra(相当重要)这几列。其他的列就不介绍了。这些内容都代表什么意义呢?

          id通常表示执行顺序,比如有3行,id分别为1,1,2,那么执行顺序就是1,1,2,通常id的个数对应select的个数。

          select_type表示查询类型,主要有以下几种:

                  SIMPLE:简单SELECT(不使用UNION或子查询等)

                  PRIMARY:最外面的SELECT

                  UNION:UNION中的第二个或后面的SELECT语句

                  DEPENDENT UNION:UNION中的第二个或后面的SELECT语句,取决于外面的查询

                  UNION RESULT:UNION的结果。

                  SUBQUERY:子查询中的第一个SELECT

                  DEPENDENT SUBQUERY:子查询中的第一个SELECT,取决于外面的查询

                  DERIVED:导出表的SELECT(FROM子句的子查询)

         type:表示使用了哪种类别的连接,有无使用索引,是使用Explain命令分析性能瓶颈的关键项之一,性能由好到坏依次为:system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL。一般来说,得保证查询至少达到range级别,最好能达到ref,否则就可能会出现性能问题。

        key:表示使用的索引,如果没有选择索引,则为NULL。

        key_len:表示索引长度,对于单列索引,该值意义不大,对于联合索引,则有重要作用,key_len的大小显示了联合索引中真正用到的哪几列,如果是联合索引,则该值越大表示走的索引列越多,查询效率越高,这里涉及到索引前缀的知识,该部分后面有空再讲。对于该列的值,也有计算公式:如果是单列索引,则key_len=索引列的长度*字符编码占用的字节数(UTF8编码为3字节,GBK为2字节,latin为1字节)+标识是否允许null的字节数(1字节)+内容长度(针对可变长列,1字节),举个例子:

      

      该表中,city_id是主键,city字段是varchar类型,长度为50,默认为null,执行explain select city from sakila.city,如下:

      

      可以发现,这里走了覆盖索引,顺便提下,覆盖索引就是sql的查询内容通过走sql索引就能查到,这种情况就是覆盖索引,所以这里我们看到,即使我们不加where条件也能走索引。索引列是city_name,key_len为152,怎么来的呢?对照上面的公式:50长度*3(UTF8编码一个字符3个字节)+1(标识是否为null)+1(标识内容的长度),这样是不是很清晰了?

    最后这列Extra:包含MySQL解决查询的详细信息,也是关键参考项之一。当这列出现了Using filesort(出现这种情况九死一生,很有必要优化)和Using temporary(这里就是十死0生了,必须优化!)就需要格外注意了。

   3、优化你的sql

        当完成了上面2步以后,如果发现你的sql很慢,这时候就必须对我们的sql进行优化了。2个大的思路是先问问自己:是否建了索引?索引建的是否合适?当我们分析一条sql慢的时候,我们需要考虑,这条sql查询的内容是否建了索引呢?如果没有,那要在哪列建哪种索引呢?比如我们要从用户表(>100W条记录)中根据姓名查某个用户,如果没有建索引,显然会很慢,那么怎么建索引呢?你可能会说很简单嘛,就在姓名上建个索引不就完了嘛。那假如(只是假如)姓名这列里,100W个用户中,有50W个叫张三的,20W个叫李四的,30W个王五的,你在这里建合适吗?显然不合适,或者说,仅仅对这列建单列索引不合适,因为选择性太差。而且这会导致个问题,当sql存储引擎发现走全表扫描比走索引更快的时候,它会放弃走索引,直接扫表。这里有个最重要的关键词:选择性,选择性可以理解为:该表中该列的不重复数/总记录数,该比值在0-1之间,越接近1说明选择性越好,唯一索引的选择性就是1,因此唯一索引是性能最好的索引。像上面用户表中,该表的选择性我们可以这么查:select  count(distinct name)/count(*) from customer;因此我们要做的,就是想办法提高索引的选择性,可以采用建联合索引,或者部分索引(就是取该列的N个字符来建索引,但是这种索引不能用于group by中)等等,遵循这个思路,我们就明白,有的开发员在性别列建索引,其实并不是一个好选择,因为选择性太差。要建高效的索引,就一定是选择性好的索引。

       端午假期第一天,上午看了会世界杯,下午闲的无聊写了这篇博客,欢迎拍砖交流,转载请务必注明出处,谢谢。

 

 

 

 

  

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
10天前
|
SQL 安全 数据库
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
105 77
|
2天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过MongoDB Atlas Data Lake或Apache Drill,可以在Java中使用SQL语法查询MongoDB数据。这两种方法都需要适当的配置和依赖库的支持。希望本文提供的示例和说明能够帮助开发者实现这一目标。
31 17
|
4天前
|
SQL Java 数据库连接
【潜意识Java】MyBatis中的动态SQL灵活、高效的数据库查询以及深度总结
本文详细介绍了MyBatis中的动态SQL功能,涵盖其背景、应用场景及实现方式。
49 6
|
29天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
87 9
|
1月前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
207 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
2月前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
47 8
|
2月前
|
SQL 安全 PHP
PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全
本文深入探讨了PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全。
83 4
|
2月前
|
SQL 监控 关系型数据库
SQL语句当前及历史信息查询-performance schema的使用
本文介绍了如何使用MySQL的Performance Schema来获取SQL语句的当前和历史执行信息。Performance Schema默认在MySQL 8.0中启用,可以通过查询相关表来获取详细的SQL执行信息,包括当前执行的SQL、历史执行记录和统计汇总信息,从而快速定位和解决性能瓶颈。
104 1
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
219 10
|
2月前
|
SQL 关系型数据库 MySQL