Java8-理解Collector

简介: 上一节学习了Java8中比较常用的内置collector的用法。接下来就来理解下collector的组成。Collector定义Collector接口包含了一系列方法,为实现具体的归约操作(即收集器)提供了范本。

上一节学习了Java8中比较常用的内置collector的用法。接下来就来理解下collector的组成。

Collector定义

Collector接口包含了一系列方法,为实现具体的归约操作(即收集器)提供了范本。我们已经看过了Collector接口中实现的许多收集器,例如toList或groupingBy。这也意味着你可以为Collector接口提供自己的实现,从而自由创建自定义归约操作。

要开始使用Collector接口,我们先来看看toList的实现方法,这个在日常中使用最频繁的东西其实也简单。

Collector接口定义了5个函数

public interface Collector<T, A, R> {
    Supplier<A> supplier();
    BiConsumer<A, T> accumulator();
    BinaryOperator<A> combiner();
    Function<A, R> finisher();
    Set<Characteristics> characteristics();
}
  1. T是流中要收集的对象的泛型
  2. A是累加器的类型,累加器是在收集过程中用于累积部分结果的对象。
  3. R是收集操作得到的对象(通常但不一定是集合)的类型。

对于toList, 我们收集的对象是T, 累加器是List, 最终收集的结果也是一个List,于是创建ToListCollector如下:

public class ToListCollector<T> implements Collector<T, List<T>, List<T>> 

理解Collector几个函数

建立新的结果容器 supplier方法

supplier方法必须返回一个结果为空的Supplier,也就是一个无参数函数,在调用时,它会创建一个空的累加器实例,供数据收集过程使用。就个人通俗的理解来说,这个方法定义你如何收集数据,之所以提炼出来就是为了让你可以传lambda表达式来指定收集器。对于toList, 我们直接返回一个空list就好。

@Override
public Supplier<List<T>> supplier() {
    return ArrayList::new;
}

累加器执行累加的具体实现 accumulator方法

accumulator方法会返回执行归约操作的函数,该函数将返回void。当遍历到流中第n个元素时,这个函数就会执行。函数有两个参数,第一个参数是累计值,第二参数是第n个元素。累加值与元素n如何做运算就是accumulator做的事情了。比如toList, 累加值就是一个List,对于元素n,当然就是add。

@Override
public BiConsumer<List<T>, T> accumulator() {
    return List::add;
}

对结果容器应用最终转换 finisher方法

当遍历完流之后,我们需要对结果做一个处理,返回一个我们想要的结果。这就是finisher方法所定义的事情。finisher方法必须返回在累积过程的最后要调用的一个函数,以便将累加器对象转换为整个集合操作的最终结果, 这个返回的函数在执行时,会有个参数,该参数就是累积值,会有一个返回值,返回值就是我们最终要返回的东西。对于toList, 我最后就只要拿到那个收集的List就好,所以直接返回List。

@Override
public Function<List<T>, List<T>> finisher() {
    return (i) -> i;
}

对于接收一个参数,返回一个value,我们可以想到Function函数,正如finisher()的返回值。对于这个返回参数本身的做法,Function有个静态方法

static <T> Function<T, T> identity() {
    return t -> t;
}

可以用Function.identity()代替上述lambda表达式。

顺序归约

合并两个结果容器 combiner

上面看起来似乎已经可以工作了,这是针对顺序执行的情况。我们知道Stream天然支持并行,但并行却不是毫无代价的。想要并行首先就必然要把任务分段,然后才能并行执行,最后还要合并。虽然Stream底层对我们透明的执行了并行,但如何并行还是需要取决于我们自己。这就是combiner要做的事情。combiner方法会返回一个供归约操作使用的函数,它定义了对流的各个子部分并行处理时,各个字部分归约所得的累加器要如何合并。对于toList而言,Stream会把流自动的分成几个并行的部分,每个部分都执行上述的归约,汇集成一个List。当全部完成后再合并成一个List。

@Override
public BinaryOperator<List<T>> combiner() {

    return (list1, list2) -> {
        list1.addAll(list2);
        return list1;
    };
}

这样,就可以对流并行归约了。它会用到Java7引入的分支/合并框架和Spliterator抽象。大概如下所示,

img_5ba96a813abcc9c081209fa85a548014.png

  1. 原始流会以递归方式拆分为子流,直到定义流是否进一步拆分的一个条件为非(如果分布式工作单位太小,并行计算往往比顺序计算要慢,而且要是生成的并行任务比处理器内核数多很多的话就毫无意义了)。
  2. 现在,所有的子流都可以并行处理,即对每个子流应用顺序归约算法。
  3. 最后,使用收集器combiner方法返回的函数,将所有的部分结果两两合并。这时,会把原始流每次拆分得到的子流对应的结果合并起来。

characteristics方法

最后一个方法characteristics会返回一个不可变的Characteristics集合,它定义了收集器的行为--尤其是关于流是否可以并行归约,以及可以使用哪些优化的提示。

Characteristics是一个包含三个项目的枚举:

  1. UNORDERED--归约结果不受流中项目的遍历和累积顺序的影响
  2. CONCURRENT--accumulator函数可以从多个线程同时调用,且该收集器可以并行归约流。如果收集器没有标为UNORDERED, 那它仅在用于无序数据源时才可以并行归约。
  3. IDENTITY_FINISH--这表明完成器方法返回的函数是一个恒等函数,可以跳过。这种情况下,累加器对象将会直接用做归约过程的最终结果。这也意味着,将累加器A不加检查地转换为结果R是安全的。

我们迄今为止ToListCollector是IDENTITY_FINISH的,因为用来累积流中元素的List已经是我们要的最终结果,用不着进一步转换了,但它并不是UNORDERED,因为用在有序流上的时候,我们还是希望顺序能够保留在得到到List中。最后,他是CONCURRENT的,但我们刚才说过了,仅仅在背后的数据源无序时才会并行处理。

上面这段话说的有点绕口,大概是说像Set生成的stream是无序的,这时候toList就可以并行。而ArrayList这种队列一样的数据结构则生成有序的stream,不能并行。

使用

直接传给collect方法就好。

List<Dish> rs = dishes
            .stream()
            .collect(new ToListCollector<>());

我们这样费尽心思去创建一个toListCollector,一个是为了熟悉Collector接口的用法,一个是方便重用。当再遇到这样的需求的时候就可以直接用这个自定义的函数了,所以才有toList()这个静态方法。否则,其实collect提供了重载函数可以直接定义这几个函数。比如,可以这样实现toList

List<Dish> dishes = dishes
                    .stream()
                    .collect(
                        ArrayList::new, //supplier
                        List::add, //accumulator
                        List::addAll //combiner
                    );

这种方法虽然简单,但可读性较差,而且当再次遇到这个需求时还要重写一遍,复用性差。

关于性能

对于stream提供的几个收集器已经可以满足绝大部分开发需求了,reduce提供了各种自定义。但有时候还是需要自定义collector才能实现。文中举例还是质数枚举算法。之前我们通过遍历平方根之内的数字来求质数。这次提出要用得到的质数减少取模运算。然而,悲剧的是我本地测算的结果显示,这个而所谓的优化版反而比原来的慢100倍。不过,还是把这个自定义收集器列出来。值得铭记的是,这个收集器是有序的,所以不能并行,那个这个combiner方法可以不要的,最好返回UnsupportedOperationException来警示此收集器的非并行性。

测试见 https://github.com/Ryan-Miao/l4Java/blob/master/src/test/java/com/test/java/stream/collect/PrimeNumbersCollectorTest.java

public class PrimeNumbersCollector implements
    Collector<Integer, Map<Boolean, List<Integer>>, Map<Boolean, List<Integer>>> {

    @Override
    public Supplier<Map<Boolean, List<Integer>>> supplier() {
        return () -> {
            Map<Boolean, List<Integer>> map = new HashMap<>();
            map.put(true, new ArrayList<>());
            map.put(false, new ArrayList<>());
            return map;
        };
    }

    @Override
    public BiConsumer<Map<Boolean, List<Integer>>, Integer> accumulator() {
        return (Map<Boolean, List<Integer>> acc, Integer candidate) -> {
            acc.get(isPrime(acc.get(true), candidate)).add(candidate);
        };
    }

    /**
     * 从质数列表里取出来,看看是不是candidate的约数.
     *
     * @param primes 质数列表
     * @param candidate 判断值
     * @return true -> 质数; false->非质数。
     */
    private static Boolean isPrime(
        List<Integer> primes,
        Integer candidate) {
        int candidateRoot = (int) Math.sqrt((double) candidate);
        return primes.stream().filter(p -> p<=candidateRoot).noneMatch(i -> candidate % i == 0);
    }

    @Override
    public BinaryOperator<Map<Boolean, List<Integer>>> combiner() {
        return (Map<Boolean, List<Integer>> map1, Map<Boolean, List<Integer>> map2) -> {
            map1.get(true).addAll(map2.get(true));
            map1.get(false).addAll(map2.get(false));
            return map1;
        };
    }

    @Override
    public Function<Map<Boolean, List<Integer>>, Map<Boolean, List<Integer>>> finisher() {
        return Function.identity();
    }

    @Override
    public Set<Characteristics> characteristics() {
        return Collections.unmodifiableSet(EnumSet.of(Characteristics.IDENTITY_FINISH));
    }
}

参考

  • Java8 in Action

    关注我的公众号

img_acfe50023e4718b33064273d65e4cd67.jpe
唯有不断学习方能改变! -- Ryan Miao
目录
相关文章
|
并行计算 算法 安全
Java 8 - 自定义Collector
Java 8 - 自定义Collector
149 0
|
监控 算法 Oracle
盘点Java中的那些常用的Garbage Collector
Java是一门面向对象的语言。在使用Java的过程中,会创建大量的对象在内存中。而这些对象,需要在用完之后“回收”掉,释放内存资源。这件事我们称它为垃圾收集(Garbage Collection,简称GC),而实际执行者就是各种各样的“垃圾收集器”(Garbage Collector,以下也简称GC)。
323 0
Java8 Stream 自定义Collector
Java8 Stream 自定义Collector
Java8 Stream 自定义Collector
怎么在java中创建一个自定义的collector
怎么在java中创建一个自定义的collector
怎么在java中创建一个自定义的collector
|
11天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
88 38
|
8天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
3天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
4天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
19 4
|
4天前
|
消息中间件 供应链 Java
掌握Java多线程编程的艺术
【10月更文挑战第29天】 在当今软件开发领域,多线程编程已成为提升应用性能和响应速度的关键手段之一。本文旨在深入探讨Java多线程编程的核心技术、常见问题以及最佳实践,通过实际案例分析,帮助读者理解并掌握如何在Java应用中高效地使用多线程。不同于常规的技术总结,本文将结合作者多年的实践经验,以故事化的方式讲述多线程编程的魅力与挑战,旨在为读者提供一种全新的学习视角。
24 3
|
10天前
|
安全 Java
在 Java 中使用实现 Runnable 接口的方式创建线程
【10月更文挑战第22天】通过以上内容的介绍,相信你已经对在 Java 中如何使用实现 Runnable 接口的方式创建线程有了更深入的了解。在实际应用中,需要根据具体的需求和场景,合理选择线程创建方式,并注意线程安全、同步、通信等相关问题,以确保程序的正确性和稳定性。