“Google只认钱!机器学习20年没进步”,CMU学者炮轰AI第一大厂

简介: 这几天,一位耿直的CMU学者Simon DeDeo,在在Twitter上猛烈炮轰Google Brain团队,对营利性机器学习行业展开嘲讽。(其实也顺便无情抨击了Facebook的研究机构。)

“机器学习是一个了不起的工程成就。但这不是科学,远远不是。”

“这技术现在所做的事情,跟1990年没什么差别,顶多就是规模更大,但并没有给我们带来比20年前更深刻的见解。”

“Google比很多大学厉害,唯一的原因是他们的每个研究人员,能够比别人多雇佣十倍以上的研究生。”

“在Google,一切都是商业计划。”

“你会身处机器学习的最前沿,但,这只是一个工程学科。所有的基本目标都是大公司设定的,你不可能成为一名科学家。”

这几天,一位耿直的CMU学者Simon DeDeo,在在Twitter上猛烈炮轰Google Brain团队,对营利性机器学习行业展开嘲讽。(其实也顺便无情抨击了Facebook的研究机构。)

他批评这些大企业专注人工智能,只是为了获取更多的钱、利润,而不是为了推动科学的进步。这些观点引发了广泛关注。

用著名媒体TNW的话来说,这是一场史诗级的讨论。

赞成和反驳之声齐飞。但身处暴风中心的Google AI负责人Jeff Dean没有发声。不过,Facebook的首席AI科学家Yann LeCun站了出来。

开炮

事情的起因是这样的。

本来一堆人(又)在批评Facebook。或曰Facebook应该拆分,包括WhatsApp、Instagram等,不应都在扎克伯格一手掌握之中。

讨论过程中,Simon DeDeo说AT&T和Facebook最大的区别是:贝尔实验室发明了C语言、UNIX、晶体管、量子霍尔效应、宇宙微波背景辐射等;而Facebook Research发明了让你上瘾社交网络的新方法。

听闻这话,有人插嘴问说:你批评了Facebook的研究机构,那你怎么评价Google Brain,或者其他科学家云集的实验室?

就是这么一问,楼歪了,人炸了。

image


△ Simon DeDeo本尊

Simon DeDeo仿佛是清了清嗓子,说:既然问起来,那就说点真话。毕竟。我不需要Google的赞助,我的职业生涯也不用巴结他们。

随后,他继续连发了30多条推文,组成一篇檄文。主要说了这些话:

我在贝叶斯时代长大。那时科学家们用一些简单、理论驱动的方程改变着我们对世界的看法。后来我也以此为标准。

2010年左右,深度学习变得不可忽视。

这令人兴奋。我们在研究所里听到访者讲解决策树、随机森林等等各种其妙的事情。我也尝试用过这些新方法,但老实说,它们吸引力不大,因为其他更简单的工具就能胜任非常非常多的任务。

后来我加入印第安纳大学,当时我们热切希望招到一个搞深度学习的人。我带所有的应聘者去吃早餐,想搞明白深度学习到底是什么。

基本结论就是:没什么什么好答案。不管你搞什么,基本就是一个人坐在那里,各种调整参数。

机器学习是一个了不起的工程成就。但这不是科学,远远不是。这技术现在所做的事情,跟1990年没什么差别,顶多就是规模更大,但并没有给我们带来比20年前更深刻的见解。

image

Google比很多大学厉害,唯一的原因是他们的每个研究人员,能够比别人多雇佣十倍以上的研究生。但大学里的研究更有学术意义。

他们不知道自己在做什么。Google有足够的人力把深度学习应用于一切的一切,目标就是找到可以产生最大影响力的领域。

我访问过大约50所大学,所到之处皆有新收获。而当我到访企业的“研究”实验室时,情况完全不同。

你能在Google Brain搞一些很酷的研究么?老实说,不能。你会身处机器学习的最前沿,但,这只是一个工程学科。所有的基本目标都是大公司设定的,你不可能成为一名科学家。

如果你想构建一个监控别人,并且向他们推销更多广告的机器,那你就去企业的实验室吧。

如果你想赚钱,那里可以挣很多。在学术界不行。

image

但如果你的思想和灵魂,想成为推动人类智慧进步的动力,你最好别去Google,当然更别去Facebook了。

我建议你来学校读研,成为一个博士。你不会得到丰厚的收入,但会得到真正关心你的导师。

一个优秀的博士生导师,不会干涉学生的所思所想,这是可耻的。而在Google,一切都是商业计划。

这不是开玩笑。是我的十年经验总结。秋天又该开始新的研究生入学申请了,建议你好好想想自己何去何从。

最后说个故事。我们之前访问了Google Research,那里的人聪明的不可思议。我们一起头脑风暴出了好多精彩的学术研究思路。会面的最后一天,高校的学者说:OK!我们去酒吧,再具体讨论一下!

Google的人说:这几天对我们来说相当于度假,手上的实际的工作已经落下了,这个周末必须加班赶工。

是的,聊聊学术对他们来说,就像一个假期。

反击

这一块大石头,激起了千层浪。

Oren Etzioni,艾伦人工智能研究所(AI2)的CEO,评价说:DeDeo的炮轰把事情简单化了,而且充斥冒犯,但也的确发人深省。

image

“有意思。不少人都持有这种鲜明而挑衅的言论。他们错得很有意思。”一位身在Google Brain的访问学者Charles Sutton反驳说。随后,他继续为“工程”两个字辩护,并指出机器学习亦有诸多进步。

在reddit上,网友们也展开热议。

有人说,DeDeo只是在Google Research里遇到一些不以研究为导向的人,并据此对所有工业界的实验室进行了概括。然后以DeepMind为例说明,只有Google这样的企业,才能花钱押注几十年后的技术。

网友jbcraigs也持反对意见。他说Google有大量的部分都在做纯粹的学术研究,从2013年以来,Geoffrey Hinton一直为Google工作,没有“领导”告诉他应该研究什么,其他Google的研究人员也是如此。

有人很疑惑:企业投入巨资进行基础研究的动机是什么?

“其中一个重要因素是PR。企业到了一定规模,支持10名学者随意展开研究的成本几乎微不足道,但却能吸引更多的人才,提高自身的声誉。”网友NichG从这个角度给出了自己的看法。

尽管外界的争议沸沸扬扬,但Google AI(包括Google Research)的负责人Jeff Dean目前仍未作出任何回应。

倒是Facebook的首席AI科学家Yann LeCun,按捺不住反击了下。他对DeDeo说:

image

你被严重误导了。

没错,Google Brain很多工作都是专注工程和应用。

但是,FAIR、DeepMind以及很多Google Brain面向研究的部门,的的确确在进行实际的科学研究。

其实,以上这种工程和学术的争论,由来已久,内外皆有。

你还记得么?去年Google Brain团队的科学家Denny Britz,曾经发文吐槽深度学习:瓶颈就是太不重视工程!

我之前读研搞NLP和信息提取的时候,大部分时间,都用来把科研想法变成代码。当时可能95%的研究生和导师们都不愿意碰代码。当我提出对某个问题的疑问时,得到的回复通常是:“这只是一个工程问题,先掠过吧”。

后来我才知道,这种说辞的潜台词是:我不认为一篇与此有关的论文,能够通过同行评审。这种心态在学术界的人中似乎普遍存在。但作为一个工程师,我不禁注意到,缺乏工程实践产生的阻碍。

当然另一种意见也不缺乏。

去年NIPS期间,获得“Test of Time”最具时间价值论文大奖的Ali Rahimi(阿里·拉希米),登台演讲,并朝着整个深度学习界开了一枪:机器学习已经成了炼金术。

我希望我所生活的世界里,这些系统都建立在严格、周密、可验证的知识之上,而不是基于“炼金术”。

我不排斥使用一些自己不懂的技术,比如说我是坐飞机来的,并不完全清楚它的工作原理,但知道有整个航空界都在研究这项技术就很安心了。

但阿里话锋一转,他说很多构建深度神经网络的一些基础工具,“我们对它几乎一无所知”。他批评机器学习太工程,而缺乏理论支撑。

当然,当时LeCun也照例跳出来反对。

那件事的详情,可以通过这个传送门回顾。

image

OMT

在这次的争论里,你持什么意见?

以及,到底Google Brain在研究什么?如果你感兴趣,这有一些参考资料。

Google Brain的2017年度总结

Google Brain AMA(2017)

Google Brain揭秘:20大研究领域

就酱~

原文发布时间为:2018-07-16
本文来自云栖社区合作伙伴“ 量子位”,了解相关信息可以关注“ 量子位”。

相关文章
|
26天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
66 3
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
41 2
|
22天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
37 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
2月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
52 3
|
2月前
|
Web App开发 人工智能 前端开发
Google 浏览器中的 AI 魔法 — window.ai
本文介绍了如何在 Chrome Canary 中启用并使用设备端 AI 功能。通过下载 Chrome Canary 并启用相关 API,你可以在本地运行 AI 模型,无需互联网连接。文章详细讲解了设置步骤、确认 AI 可用性的方法以及如何使用 `window.ai` 进行文本会话。虽然目前的性能和功能还有待提升,但这一技术为未来的前端开发和智能应用提供了无限可能。
80 0
|
4月前
|
机器学习/深度学习 人工智能 算法
探索AI的魔法:机器学习与深度学习的奥秘
【8月更文挑战第27天】在这篇文章中,我们将深入探讨人工智能的两个重要分支:机器学习和深度学习。我们将首先理解它们的基本概念,然后通过Python代码示例,展示如何应用这些技术解决实际问题。无论你是AI新手,还是有经验的开发者,这篇文章都将为你提供新的知识和启示。让我们一起开启这场AI的魔法之旅吧!
|
4月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
139 0