0.30000000000000004

简介: 0.30000000000000004问题是计算机科学领域的经典BUG, 由比尔盖茨那一代人标准化的浮点数表示法造福了一代人也祸害了一代人, 由此引出了不少的坑, 比如大多数编程语言中0.


        0.30000000000000004问题是计算机科学领域的经典BUG, 由比尔盖茨那一代人标准化的浮点数表示法造福了一代人也祸害了一代人, 由此引出了不少的坑, 比如大多数编程语言中0.1+0.2==0.30000000000000004.遇到这个问题不要担心, 你的编译环境没有坏, 只是计算机在做进制转换的时候需要绕一些丸子, 本文来具体分析一下这个bug背后的秘密, 也可以访问它的官解: http://0.30000000000000004.com/


预览



    众所周知JS仅有Number这个数值类型,而Number采用的时IEEE 754 64位双精度浮点数编码。而浮点数表示方式具有以下特点:

  1. 浮点数可表示的值范围比同等位数的整数表示方式的值范围要大得多;

  2. 浮点数无法精确表示其值范围内的所有数值,而有符号和无符号整数则是精确表示其值范围内的每个数值;

  3. 浮点数只能精确表示m*2e的数值;

  4. 当biased-exponent为2e-1-1时,浮点数能精确表示该范围内的各整数值;

  5. 当biased-exponent不为2e-1-1时,浮点数不能精确表示该范围内的各整数值。

  由于部分数值无法精确表示(存储),于是在运算统计后偏差会愈见明显。

 


    不仅是JavaScript会产生这种问题,只要是采用IEEE 754 Floating-point的浮点数编码方式来表示浮点数时,则会产生这类问题。绝对完美的数值编码方案是不存在的,为了处理方便,这个标准引入了大量的折衷和妥协,建立在这种表达方式上的算法(例如除法运算)也一样。由于数值表达方式存在“缺陷”,运算结果不可避免地堆聚起越来越多的误差, 补丁越来越多, 浮点算法就成了和路由协议一样的筛子。下面我们来分析整个运算过程。

  1. 0.1 的二进制表示为 1.1001100110011001100110011001100110011001100110011001 1(0011)+ * 2^-4;

  2. 当64bit的存储空间无法存储完整的无限循环小数,而IEEE 754 Floating-point采用round to nearest, tie to even的舍入模式,因此0.1实际存储时的位模式是0-01111111011-1001100110011001100110011001100110011001100110011010;

  3. 0.2 的二进制表示为 1.1001100110011001100110011001100110011001100110011001 1(0011)+ * 2^-3;

  4. 当64bit的存储空间无法存储完整的无限循环小数,而IEEE 754 Floating-point采用round to nearest, tie to even的舍入模式,因此0.2实际存储时的位模式是0-01111111100-1001100110011001100110011001100110011001100110011010;

  5. 实际存储的位模式作为操作数进行浮点数加法,得到 0-01111111101-0011001100110011001100110011001100110011001100110100。转换为十进制即为0.30000000000000004。



扩展一下, 就有了多种类似的产生式:


Why 0.7 * 180===125.99999999998?                 

  1. 0.7实际存储时的位模式是0-01111111110-0110011001100110011001100110011001100110011001100110;

  2. 180实际存储时的位模式是0-10000000110-0110100000000000000000000000000000000000000000000000;

  3. 实际存储的位模式作为操作数进行浮点数乘法,得到0-10000000101-1111011111111111111111111111111111111111101010000001。转换为十进制即为125.99999999998。

 

Why 1000000000000000128 === 1000000000000000129 ?

  1. 1000000000000000128实际存储时的位模式是0-10000111010-1011110000010110110101100111010011101100100000000001;

  2. 1000000000000000129实际存储时的位模式是0-10000111010-1011110000010110110101100111010011101100100000000001;

  3. 因此1000000000000000128和1000000000000000129的实际存储的位模式是一样的。






日常开发规范


■ 大多数Web页面不需要小数
避免使用小数,尽量设法使用整数。确保数组的索引都是整数。按分(而不是元)计算金额。百分比放大100倍计算以避免出现小数。尽可能不用除法(/)和模(%)运算,因为大多数情况下它们直接导致出现浮点数。如果必须使用除法,立即用Math.round方法回归整数运算。

■ 如果必须使用浮点数,则尽可能引入冗余小数位——即在程序要求的运算精度之外,再增加小数位
如果程序需要5位数字的小数精度,则在运算中至少保留6位的小数,8位更好。冗余位越多,累计误差的影响越小。

■ 避免在同一个表达式中使用相差太大或太小的数值
对两个非常接近的数值执行减法或比较操作很容易出错。将很小的数值和很大数值相加无异于浪费时间,小的数值很可能被当作0。不过,很小的数值乘以很大的数值一般不会出现问题,例如2 * 12345678会得到正确的结果24691356。但是,0.1 - 0.09的结果是0.010000000000000009。

■ 用isFinite()和isNaN()检查运算结果
通过表单提交任何数值运算结果之前,一定要先检查数据的合法性。

■ 慎用数值运算
程序涉及的数值运算越少,引入误差的可能就越小。视浮点数为贵客,不可任意驱使。

目录
相关文章
|
5天前
|
云安全 人工智能 安全
AI被攻击怎么办?
阿里云提供 AI 全栈安全能力,其中对网络攻击的主动识别、智能阻断与快速响应构成其核心防线,依托原生安全防护为客户筑牢免疫屏障。
|
15天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
9天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
590 212
|
4天前
|
编解码 Linux 数据安全/隐私保护
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
234 138
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
828 60
|
7天前
|
人工智能 移动开发 自然语言处理
2025最新HTML静态网页制作工具推荐:10款免费在线生成器小白也能5分钟上手
晓猛团队精选2025年10款真正免费、无需编程的在线HTML建站工具,涵盖AI生成、拖拽编辑、设计稿转代码等多种类型,均支持浏览器直接使用、快速出图与文件导出,特别适合零基础用户快速搭建个人网站、落地页或企业官网。
1214 157
|
6天前
|
存储 安全 固态存储
四款WIN PE工具,都可以实现U盘安装教程
Windows PE是基于NT内核的轻量系统,用于系统安装、分区管理及故障修复。本文推荐多款PE制作工具,支持U盘启动,兼容UEFI/Legacy模式,具备备份还原、驱动识别等功能,操作简便,适合新旧电脑维护使用。
512 109