实时交互平台流程与技术分析

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:   最近几个月一直在做基于storm的流式处理,索性整理下所有的知识点与技术知识。   一、数据准备   1、首先,我们需要用户的所有数据,使用MapReduce进行数据处理,生成业务宽表导入hbase与Redis,用于后续实时处理直接从Redis中获取相应数据,减少读写磁盘IO的消耗。

  最近几个月一直在做基于storm的流式处理,索性整理下所有的知识点与技术知识。

  一、数据准备

  1、首先,我们需要用户的所有数据,使用MapReduce进行数据处理,生成业务宽表导入hbase与Redis,用于后续实时处理直接从Redis中获取相应数据,减少读写磁盘IO的消耗。

 

  二、消息的接入

  1、传入的数据是经过二进制处理的,所以使用jetty轻量级服务对传入的报文进行接入解析,同时部署多个服务,使用nginx进行负载均衡。

 

  2、每个服务同时启动多个线程进行消息的接入,通过blockingQueue进行存储,随后进行报文解析,序列化后发送对应主题的kafka.

 

  三、storm处理

  1、使用集成的kafkaspout进行消息的接入代替storm的spout,降低工程复杂度,可直接编写bolt进行业务逻辑处理,随后进行数据的一次性过滤bolt,验证消息的正确性并并封装入对象中。

 

  2、通过消息中的相应主键,从Redis中加载该用户的全量数据,以便后续业务处理(存入hbase是以防redis出现问题进而再查询hbase,同时hbase中的rowkey做了散列,数据均匀分布在每个region中)。

 

  3、加载配置活动规则,这些规则通过前台web系统配置保存,存储于redis中。对多个规则进行遍历匹配,封装成一个大的对象,传入下游推送拓扑。

 

  4、推送拓扑在接收到消息后,从对象中获取封装的消息对象的渠道对象,对其进行遍历发送至不同的渠道。

目录
相关文章
|
缓存 NoSQL Java
redis在排行榜中的使用总结
# 前言 >[redis官网](https://redis.io) > >Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如 字符串(strings), 散列(hashes), 列表(lists), 集合(se
13027 0
|
9月前
分布匹配蒸馏:扩散模型的单步生成优化方法研究
扩散模型在生成高质量图像方面表现出色,但其迭代去噪过程计算开销大。分布匹配蒸馏(DMD)通过将多步扩散简化为单步生成器,结合分布匹配损失和对抗生成网络损失,实现高效映射噪声图像到真实图像,显著提升生成速度。DMD利用预训练模型作为教师网络,提供高精度中间表征,通过蒸馏机制优化单步生成器的输出,从而实现快速、高质量的图像生成。该方法为图像生成应用提供了新的技术路径。
386 2
|
10月前
|
存储 数据采集 大数据
数据仓库建模规范思考
本文介绍了数据仓库建模规范,包括模型分层、设计、数据类型、命名及接口开发等方面的详细规定。通过规范化分层逻辑、高内聚松耦合的设计、明确的命名规范和数据类型转换规则,提高数据仓库的可维护性、可扩展性和数据质量,为企业决策提供支持。
816 10
|
12月前
|
前端开发 开发者
useContext 钩子详解
【10月更文挑战第14天】`useContext` 是 React 中的一个 Hook,用于在组件树中传递数据,避免手动传递 props。本文从基本概念、使用方法、常见问题及解决方法等方面详细介绍了 `useContext`,并提供了代码示例,帮助开发者更好地理解和应用这一钩子。
358 6
|
机器学习/深度学习 存储 算法
关于深度学习量化的操作
0. 简介 深度学习中做量化提升运行速度是最常用的方法,尤其是大模型这类非常吃GPU显存的方法。一般是高精度浮点数表示的网络权值以及激活值用低精度(例如8比特定点)来近似表示达到模型轻量化,加速深度学习模型推理,目前8比特推理已经比较成熟。比如int8量化,就是让原来32bit存储的数字映射到8bit存储。int8范围是[-128,127], uint8范围是[0,255]。 使用低精度的模型推理的优点:1. 模型存储主要是每个层的权值,量化后模型占用空间小,32比特可以缩减至8比特,并且激活值用8比特后,减小了内存的访问带宽需求。2:单位时间内处理定点运算指令比浮点数运算指令多。 1.
228 12
|
12月前
|
机器学习/深度学习 数据可视化 自动驾驶
YOLO11-seg分割如何训练自己的数据集(道路缺陷)
本文介绍了如何使用自己的道路缺陷数据集训练YOLOv11-seg模型,涵盖数据集准备、模型配置、训练过程及结果可视化。数据集包含4029张图像,分为训练、验证和测试集。训练后,模型在Mask mAP50指标上达到0.673,展示了良好的分割性能。
4837 4
|
存储 人工智能 开发框架
认识什么是互联网数据中心(IDC)
互联网数据中心(IDC)拥有高速带宽、高性能网络与安全环境,提供服务器托管、租用等服务。它是数据存储与流通的核心,支持互联网内容提供商、企业和各类网站的大规模、高质量需求。机房维护涵盖多方面,确保设备稳定运行。中国IDC行业快速发展,机房按星级划分,从一星到五星,标准逐步提升,体现国家信息基础设施的进步与成熟。国际上,Uptime Institute的Tier等级进一步规范了数据中心的可用性与可靠性标准。
2222 6
|
数据采集 安全 API
数据治理:实现原始数据不出域,确保数据可用不可见的创新策略
在数字化时代,数据成为企业宝贵资产,驱动业务决策与创新。然而,数据量激增和流通频繁带来了安全和管理挑战。“原始数据不出域,数据可用不可见”的治理理念应运而生,通过数据脱敏、沙箱技术和安全多方计算等手段,确保数据安全共享与高效利用。这一理念已广泛应用于金融、医疗等行业,提升了数据价值和企业竞争力。
1865 0
|
存储 Linux 索引
什么是Python的pip
什么是Python的pip
403 0
|
存储 Kubernetes Cloud Native
浅谈etcd服务注册与发现
浅谈etcd服务注册与发现
685 0