最简单的大数据性能估算方法

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

sjjt-212

大数据的性能是个永恒的话题。不过,在实际工作中我们发现,许多人都不知道如何进行最简单的性能估算,结果经常被大数据厂商忽悠:)。

这个办法我在以往的文章中也提到过,不过没有以这个题目明确地点出来。


其实很简单,就是算一下这些数据从硬盘上取出来用的时间。除了个别按索引取数的运算外,绝大多数运算都会涉及对数据的整体遍历,比如分组汇总统计、按条件查询(非索引字段);那么,这些运算耗用的时间,无论如何不可能小于硬盘访问的时间,我们就能算出一个理论上的极限值。

比如,有人宣称实现10T数据的OLAP汇总只需要3秒。那么这意味着什么呢?

常见的15000转硬盘,在操作系统下的访问速度也就不到200M/秒,SSD会快一些,但也没数量级的提升,大概3秒读1G的样子。这样,从单块硬盘中读出10T数据就需要30000秒以上,如果想在3秒内完成汇总,那就需要1万块硬盘!作为用户,你是否做了这个准备呢?

当然,硬盘及硬盘在不同环境下的速度不尽相同,可能更快或更慢,但总之都可以用这个简单的办法去估算。不知道自家硬盘的速度?那弄个大文件读一下试试就知道了,拿到实验数据再去计算会更准确。要强调的是,不能简单地看硬盘厂商标称的性能指标,在文件系统下,那个理想值常常连一半都达不到,还是实测的最可靠。

这样,我们就能知道某个大数据问题最理想的情况能够达到什么性能,比这个指标还好的期望,在用于估算指标的硬件条件下都是不可能实现的,没有必要再去琢磨软件产品和技术方案了。


这种估算也指明了一个优化方向,就是减少存储量和访问量。

减少存储量当然不能减少数据本身,用于计算的数据一条也不能少,否则就出现错误结果。减少存储量要靠数据压缩的手段。10T的原始数据,如果有好的压缩手段,实际在硬盘上存储下来可能只有1T甚至更少,这时候3秒汇总这些数据就不再需要1万块硬盘了。

在存储量不能再减少的情况下,还有些软件手段来减少访问量,常用的方法就是列存。一个数据表有100列占了10T,如果只访问三列进行汇总,那大概只需要访问300G数据,这时候3秒完成汇总当然也不需要1万块硬盘了。

不过,大数据厂商在宣称10T、3秒这种性能指标时,一般不会明确指出采用压缩或列存技术后存储量和访问量能降到多少。这就容易给用户造成错觉,以为这个技术能够通用地解决大数据问题,而经常,有些数据的压缩率无法做得很高,对于访问列较多的运算列存也没啥优势。

要更准确地估算性能极限,也要考虑减少存储量和访问量的手段。尝试一下自己的数据能有多大的压缩率(用常规的zip软件就可以),并且检查运算是否是从很多列中取出很少列的情况。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
7月前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
876 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
4月前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
109 4
|
5月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
135 4
|
5月前
|
存储 大数据 数据管理
大数据分区提高查询性能
大数据分区提高查询性能
105 2
|
5月前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
量子计算作为革命性的计算范式,凭借量子比特和量子门的独特优势,展现出在大数据处理中的巨大潜力。本文探讨了量子计算的基本原理、在大数据处理中的应用及面临的挑战与前景,展望了其在金融、医疗和物流等领域的广泛应用。
|
5月前
|
存储 负载均衡 大数据
大数据水平分区提高查询性能
【11月更文挑战第2天】
108 4
|
6月前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
7月前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
270 11
|
6月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
81 0

热门文章

最新文章