NumPy 音频和图像处理

简介: NumPy 音频和图像处理# 来源:NumPy Cookbook 2e Ch5将图像加载进内存import numpy as np import matplotlib.

NumPy 音频和图像处理

# 来源:NumPy Cookbook 2e Ch5

将图像加载进内存

import numpy as np 
import matplotlib.pyplot as plt

# 首先生成一个 512x512 的图像
# 在里面画 30 个正方形
N = 512 
NSQUARES = 30

# 初始化
img = np.zeros((N, N), np.uint8) 
# 正方形的中心是 0 ~ N 的随机数
centers = np.random.random_integers(0, N, size=(NSQUARES, 2))
# 正方形的边长是 0 ~ N/9 的随机数
radii = np.random.randint(0, N/9, size=NSQUARES) 
# 颜色是 100 ~ 255 的随机数
colors = np.random.randint(100, 255, size=NSQUARES)

# 生成正方形
for i in xrange(NSQUARES):
    # 为每个正方形生成 x 和 y 坐标
    xindices = range(centers[i][0] - radii[i], centers[i][0]  + radii[i])   
    xindices = np.clip(xindices, 0, N - 1)   
    yindices = range(centers[i][1] - radii[i], centers[i][1]  + radii[i])   

    # clip 过滤范围之外的值
    # 相当于 yindices = yindices[(0 < yindices) & (yindices < N - 1)]
    yindices = np.clip(yindices, 0, N - 1)
    if len(xindices) == 0 or len(yindices) == 0:
        continue
    # 将 x 和 y 坐标转换成网格
    # 如果不转换成网格,只会给对角线着色
    coordinates = np.meshgrid(xindices, yindices)     
    img[coordinates] = colors[i]

# tofile 以二进制保存数组的内容,没有形状和类型信息 
img.tofile('random_squares.raw') 
# np.memmap 以二进制加载数组,如果类型不是 uint8,则需要执行
# 如果数组不是一维,还需要指定形状
img_memmap = np.memmap('random_squares.raw', shape=img.shape)

# 显示图像(会自动将灰度图映射为伪彩色)
plt.imshow(img_memmap) 
plt.axis('off') 
plt.show()

组合图像

import numpy as np import 
matplotlib.pyplot as plt 
from scipy.misc import lena

ITERATIONS = 10 
lena = lena() 
SIZE = lena.shape[0] 
MAX_COLOR = 255. 
x_min, x_max = -2.5, 1 
y_min, y_max = -1, 1

# 数组初始化
x, y = np.meshgrid(np.linspace(x_min, x_max, SIZE),
                   np.linspace(y_min, y_max, SIZE)) 
c = x + 1j * y 
z = c.copy() 
fractal = np.zeros(z.shape, dtype=np.uint8) + MAX_COLOR 

# 生成 mandelbrot 图像 
for n in range(ITERATIONS):
    mask = np.abs(z) <= 4
    z[mask] = z[mask] ** 2 +  c[mask]
    fractal[(fractal == MAX_COLOR) & (-mask)] = (MAX_COLOR - 1) * n / ITERATIONS

# 绘制 mandelbrot 图像 
plt.subplot(211) 
plt.imshow(fractal) 
plt.title('Mandelbrot') 
plt.axis('off')

# 将 mandelbrot 和 lena 组合起来
plt.subplot(212) 
# choose 的作用是,如果 fractal 的元素小于 lena 的对应元素
# 就选择 fractal,否则选择 lena
# 相当于 np.fmin(fractal, lena)
plt.imshow(np.choose(fractal < lena, [fractal, lena])) 
plt.axis('off') 
plt.title('Mandelbrot + Lena')
plt.show()

使图像变模糊

import numpy as np 
import matplotlib.pyplot as plt 
from random import choice 
import scipy 
import scipy.ndimage

# Initialization 
NFIGURES = 5 
k = np.random.random_integers(1, 5, NFIGURES) 
a = np.random.random_integers(1, 5, NFIGURES)
colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

# 绘制原始 的 lena 图像
lena = scipy.misc.lena() 
plt.subplot(211) 
plt.imshow(lena) 
plt.axis('off')

# 绘制模糊的 lena 图像
plt.subplot(212) 
# 使用 sigma=4 的高斯过滤器
blurred = scipy.ndimage.gaussian_filter(lena, sigma=4)
plt.imshow(blurred) 
plt.axis('off')

# 在极坐标中绘图
# 极坐标无视 subplot
theta = np.linspace(0, k[0] * np.pi, 200) 
plt.polar(theta, np.sqrt(theta), choice(colors))

for i in xrange(1, NFIGURES):
    theta = np.linspace(0, k[i] * np.pi, 200)   
    plt.polar(theta, a[i] * np.cos(k[i] * theta), choice(colors))
plt.axis('off')
plt.show()

重复声音片段

import scipy.io.wavfile 
import matplotlib.pyplot as plt 
import urllib2 
import numpy as np

# 下载音频文件
response = urllib2.urlopen('http://www.thesoundarchive.com/ austinpowers/smashingbaby.wav') 
print(response.info()) 

# 将文件写到磁盘
WAV_FILE = 'smashingbaby.wav' 
filehandle = open(WAV_FILE, 'w') 
filehandle.write(response.read()) 
filehandle.close() 

# 使用 SciPy 读取音频文件
sample_rate, data = scipy.io.wavfile.read(WAV_FILE) 
print("Data type", data.dtype, "Shape", data.shape)
# ('Data type', dtype('uint8'), 'Shape', (43584L,))

# 绘制原始音频文件
plt.subplot(2, 1, 1)
plt.title("Original") 
plt.plot(data)

# 绘制重复后的音频文件
plt.subplot(2, 1, 2)
# tile 用于重复数组
repeated = np.tile(data, 3)
plt.title("Repeated") 
plt.plot(repeated) 

# 保存重复后的音频文件
scipy.io.wavfile.write("repeated_yababy.wav", sample_rate, repeated)
plt.show()

生成声音

# 声音可以表示为某个振幅、频率和初相的正弦波
# 如果我们把钢琴上的键编为 1 ~ 88,
# 那么它的频率就是 440 * 2 ** ((n - 49) / 12)
# 其中 n 是键的编号

import scipy.io.wavfile 
import numpy as np
import matplotlib.pyplot as plt

RATE = 44100 
DTYPE = np.int16

# 生成正弦波 
def generate(freq, amp, duration, phi): 
    t = np.linspace(0, duration, duration * RATE) 
    data = np.sin(2 * np.pi * freq * t + phi) * amp

    return data.astype(DTYPE)

# 初始化
# 弹奏 89 个音符
NTONES = 89 
# 振幅是 200 ~ 2000
amps = 2000. * np.random.random((NTONES,)) + 200. 
# 时长是 0.01 ~ 0.2
durations = 0.19 * np.random.random((NTONES,)) + 0.01 
# 键从 88 个中任取
keys = np.random.random_integers(1, 88, NTONES) 
# 频率使用上面的公式生成
freqs = 440.0 * 2 ** ((keys - 49.)/12.) 
# 初相是 0 ~ 2 * pi
phi = 2 * np.pi * np.random.random((NTONES,))

tone = np.array([], dtype=DTYPE)

for i in xrange(NTONES):   
    # 对于每个音符生成正弦波
    newtone = generate(freqs[i], amp=amps[i],  duration=durations[i], phi=phi[i])   
    # 附加到音频后面
    tone = np.concatenate((tone, newtone))

# 保存文件
scipy.io.wavfile.write('generated_tone.wav', RATE, tone)

# 绘制音频数据
plt.plot(np.linspace(0, len(tone)/RATE, len(tone)), tone) 
plt.show()

设计音频滤波器

import scipy.io.wavfile 
import matplotlib.pyplot as plt 
import urllib2 
import numpy as np

# 下载音频文件
response = urllib2.urlopen('http://www.thesoundarchive.com/ austinpowers/smashingbaby.wav') 
print(response.info()) 

# 将文件写到磁盘
WAV_FILE = 'smashingbaby.wav' 
filehandle = open(WAV_FILE, 'w') 
filehandle.write(response.read()) 
filehandle.close() 

# 使用 SciPy 读取音频文件
sample_rate, data = scipy.io.wavfile.read(WAV_FILE) 
print("Data type", data.dtype, "Shape", data.shape)
# ('Data type', dtype('uint8'), 'Shape', (43584L,))

# 绘制原始音频文件
plt.subplot(2, 1, 1)
plt.title("Original") 
plt.plot(data)

# 设计滤波器,iirdesign 设计无限脉冲响应滤波器
# 参数依次是 0 ~ 1 的正则化频率、
# 最大损失、最低衰减和滤波类型
b,a = scipy.signal.iirdesign(wp=0.2, ws=0.1, gstop=60, gpass=1, ftype='butter')

# 传入刚才的返回值,使用 lfilter 函数来调用滤波器
filtered = scipy.signal.lfilter(b, a, data)

# 绘制滤波后的音频
plt.subplot(2, 1, 2) 
plt.title("Filtered") 
plt.plot(filtered)

# 保存滤波后的音频
scipy.io.wavfile.write('filtered.wav', sample_rate, filtered. astype(data.dtype))
plt.show()

Sobel 过滤器的边界检测

# Sobel 过滤器用于提取图像的边界
# 也就是将图像转换成线框图风格
import scipy 
import scipy.ndimage 
import matplotlib.pyplot as plt

# 导入 Lena
lena = scipy.misc.lena()

# 绘制 Lena(左上方)
plt.subplot(221) 
plt.imshow(lena) 
plt.title('Original') 
plt.axis('off')


# Sobel X 过滤器过滤后的图像(右上方)
sobelx = scipy.ndimage.sobel(lena, axis=0, mode='constant')
plt.subplot(222) 
plt.imshow(sobelx) 
plt.title('Sobel X') 
plt.axis('off')

# Sobel Y 过滤器过滤的图像(左下方) 
sobely = scipy.ndimage.sobel(lena, axis=1, mode='constant')
plt.subplot(223) 
plt.imshow(sobely) 
plt.title('Sobel Y') 
plt.axis('off')

# 默认的 Sobel 过滤器(右下方)
default = scipy.ndimage.sobel(lena)
plt.subplot(224) 
plt.imshow(default) 
plt.title('Default Filter') 
plt.axis('off')
plt.show()

相关文章
|
3月前
|
存储 计算机视觉 Python
NumPy 在图像处理中的应用
【8月更文第30天】NumPy 是 Python 中用于科学计算的核心库之一,它提供了高效的数组操作功能。在图像处理领域,NumPy 的数组结构非常适合存储和操作图像数据。本文将详细介绍如何使用 NumPy 进行图像处理,包括加载图像、显示图像、像素操作、颜色空间转换和简单的滤波器应用等。
111 0
|
6月前
|
计算机视觉 Python
10个使用NumPy就可以进行的图像处理步骤
这篇文章介绍了使用NumPy进行图像处理的10个基本步骤,包括读取图像、缩小图像、水平和垂直翻转、旋转、裁剪、分离RGB通道、应用滤镜(如棕褐色调)、灰度化、像素化、二值化以及图像融合。通过这些简单的操作,读者可以更好地掌握NumPy在图像处理中的应用。示例代码展示了如何实现这些效果,并配有图像结果。文章强调这些方法适合初学者,更复杂的图像处理可使用专门的库如OpenCV或Pillow。
137 5
|
6月前
|
算法 计算机视觉 Python
图像处理与NumPy的完美结合
【4月更文挑战第17天】NumPy在Python图像处理中扮演重要角色,它支持高效的矩阵运算,使图像表示和操作变得简单。通过NumPy,可以方便地读取、显示图像,执行算术运算和滤波操作。此外,结合傅里叶变换和直方图均衡化等高级技术,NumPy能实现复杂图像处理任务,提升对比度和分析频率特性。其灵活性和效率为图像处理领域带来便利和进步。
|
6月前
|
机器学习/深度学习 存储 算法
OpenCV与NumPy:图像处理中的黄金组合
【4月更文挑战第17天】OpenCV和NumPy是Python图像处理的两大利器,互补协作形成黄金组合。OpenCV专注计算机视觉,提供丰富算法,而NumPy擅长数值计算和数组操作。两者无缝对接,共同实现高效、灵活的图像处理任务。通过灰度化、二值化、边缘检测等案例,展示了它们的协同作用。未来,这一组合将在计算机视觉和机器学习领域发挥更大作用,解锁更多图像处理潜力。
|
6月前
|
算法 关系型数据库 计算机视觉
NumPy 秘籍中文第二版:五、音频和图像处理
NumPy 秘籍中文第二版:五、音频和图像处理
130 0
|
编解码 计算机视觉 Python
【图像处理】numpy打马赛克
经过上次对numpy简单的认识,相信家人们都非常想了解我们目前可以使用它做什么了 那么我们就举两个实战例子来进行说明 今天我们先以numpy打马为例 Are you ready?
146 0
|
计算机视觉
Python-OpenCV图像处理-02-numpy数组操作
Python-OpenCV图像处理-02-numpy数组操作
170 0
|
计算机视觉 Python
Python 图像处理篇-利用opencv库和numpy库读取包含中文路径下的本地图片实例演示
Python 图像处理篇-利用opencv库和numpy库读取包含中文路径下的本地图片实例演示
146 0
Python 图像处理篇-利用opencv库和numpy库读取包含中文路径下的本地图片实例演示
|
存储 测试技术 数据库
用 Python 和 Numpy 实现音频数字指纹特征识别
本文讲的是用 Python 和 Numpy 实现音频数字指纹特征识别,我第一次用 Shazam 的时候,简直惊呆了。除了 GPS 功能和从楼梯摔下仍然没坏之外,能用一段音频片段识别歌曲是我所见过我手机能做到的最不可思议的事了。识别是通过一个叫音频特征识别的过程来实现的,例子包括:
4645 0
|
计算机视觉 Python
NumPy Cookbook 带注释源码 五、NumPy 音频和图像处理
版权声明:License CC BY-NC-SA 4.0 https://blog.csdn.net/wizardforcel/article/details/73135779 # ...
845 0