在企业的数据仓库和数据集市中,他们的数据通常太旧,处理过于繁琐,而且成本太高。
当今基于云计算的数据分析有能力实时处理,数据库能够以“需求速度”运行,甚至小型企业也可以将数据分析处理与最新的新兴技术结合在一起,例如机器学习和预测算法。
但事实证明,基于云计算的数据分析的路径比许多企业预计的要漫长而艰难。因此,随着IT遇到成本超支,技术无法达到预期,以及数据庞大的数据证明存在等问题,企业的业务就开始出现问题。这是为什么。
首先,从企业向公共云传输数据比预期的更麻烦,而且由于工作的大部分人工处理性质而加剧。AWS、Google、Microsoft和其他公司都有自己的技术,比如AWS的Snowball。然而,即使使用这些工具,通过流程来移动数PB字节的数据也是非常棘手的,至少可以这么说。
其次,数据集成仍然是云计算面临的一个问题。迁移数据并不会奇迹般地解决企业的集成挑战。此外,记录系统可能仍然保留在内部部署的数据中心中,因此需要及时与云中现在存储的数据同步以获得最新结果。这意味着要结合使用新旧数据集成技术,并建立包括数据移动和结构转换的流程。
最后,基于云的分析数据库本身很复杂且难以配置。其中一些复杂性是由于数据库中的安全子系统造成的。这些都是必要的,但必须在数据库和数据分析的背景下弄清楚。数据分析系统的其他系统(无论是在云中还是在内部部署的数据中心)都必须具有系统安全性,这可能意味着大多数其他需要实时分析的操作系统。
虽然这些云计算分析的挑战都可以克服,但IT部门应该了解,当它认为(或者更有可能被告知)它将是一半时,其努力水平实际上可能是百分之百。
因此,企业需要为项目准备时间更长,预算更快耗尽,以及由于这些问题导致的未能上升的情况做好准备。
原文发布时间为:2018-05-22
本文作者:Harris编译