MySQL数据库水平扩容方案

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL数据库水平扩容方案

数据库水平扩容简述

一、         背景

随着云技术的不断发展,存储资源和计算资源的成熟,成本不断下降,使得企业开发部署提供服务更加的便捷。得益于此,对于高速发展的中小型企业,可以通过不断地堆砌机器,增加应用集群来应对不断增长的流量。

但是随着企业的不断发展,其中一个瓶颈并不能简单地通过堆砌机器来解决,这便是越来越庞大的数据库带来的性能天花。而应对这个天花板的有效手段之一,就是通过对数据库的分库分表,使得单表的数据量低于500W

今天我们讨论一个更长远一点的问题。就是当企业进入了高速增长的赛道后,即便是对数据分库分表后,无论是数据库的容量,还是单库单表的数据量也总会到达天花板,此时该如何扩展我们的数据库性能。

 

二、  基础知识

      1、分库分表

分库分表这个概念十分好理解,就是原来存储在一个数据表内的数据,通过某种规则平均的分散在多个数据库的多张同样结构的数据表中。

我们假定以用户表(t_user)来举例子,假设当前这个表的数据量已经到达了2kw,相对500w这个临界值来说足足超过了4倍。那么我们如何通过分库分表来调整该表?

正如上面所说到的,我们可以对数据表其中一个或多个字段,通过某个可计算的平均的每次计算结果绝对一致的算法来分散存储我们的数据。可以很容易的想到很多种算法,比如对id进行mod运算,对创建时间按月分成多个表等等。

936532075e5bc4519f6d841d9778c8e8ace30464

1.分库分表示意图

 

如上图所展示的,表通过函数fx的计算后倍分散到不同数据库的不同表中。这里可以简单代入一种分库算法——id取膜。

上图中一共分了三个数据库,每个库中又分了两张数据表。那么id % 3 == 0的数据都会集中到分库1中,分库1中的数据id % 2 == 0 的数据,又会存储在第一个分表中,其他如此类推。

 

三、         水平扩展

首先来思考一下,水平扩展有什么技术难度?

4c4c4da51b432e8b623dad389da61f44920e224e

图2.水平扩容示意图

 

 

第一个显而易见的问题就是规则的变化和数据的迁移。

如果控制分库分表的规则是通过应用程序内完成的,规则的变化意味着必须重新发布使用新规则的应用集群。而数据迁移带来的麻烦则更加严重,在数据没有完成迁移之前,需要编写专门的脚本来处理数据的导出导入,不同的业务不同的表关系,都会使得这个脚本变得极其的复杂,而且还要同时兼顾增量数据同步,时间点,数据一致性等问题,稍有不慎,便会对用户的数据造成影响。

 

思考,是否有一种分库规则,在扩展分库的时候不需要进行规则的变化和数据的迁移呢?

 

 

答案当然是有的,就是将分库的规则修改为按段分库。如下图所示,如果我们分三个库,每个库中有两张分表(分表规则还是按取膜运算),那么一共可以存储3kw的数据,其中分库规则为id的值在[1,1kw]的会被存储到0库上,在[1kw+1, 2kw]范围的会被存储到1库,在[2kw+1, 3kw]范围的会被存储到2库。当我们的数据量突破3kw时,我们只需要增加一个分库,用于存储[3kw+1, 4kw]范围的数据即可,完全不需要对前三个分库的数据做处理。同理,也可以基于时间的分库方式。

7ff4b5cc7d3a2d746085b56972de733f0f180203

图3.避免数据迁移和规则更新的分库示例图

 

这种分库的规则优势可以说是非常的明显了,但是这种分库规则会带来什么样的劣势呢?

可以想象,我们为什么要做分库分表?就是单库的性能已经不能满足我们日常的业务需求了,需要将单个数据库的性能压力分摊到多个数据库上。而上述这种分库方式,势必会导致insert/update压力都集中到一个数据库实例上,并不能很好得分摊性能压力。

 

 

那么现在第三个问题来了,是否还有什么分库规划方式,既能避免数据迁移的成本,又能解决单库性能热点问题的方案呢?

 

 

答案肯定也是有的,下面我们来介绍一下阿里云TDDL团队给出的几种水平扩展模式。

8d0fedaa22bdc1961bc964aacad0aa7f7494806f

图4.水平扩展模式1

 

第一种水平扩展的模式如上图,在我们只有一个分库的时候,可以通过设定4个分表,示例中使用简单的id取膜分表方式。当单库的容量已经达到上限,我们可以通过增加一个数据库实例,把分表2,3整体迁移到新的实例上。这样做的好处是,只需把整表迁移到新的库中即可,无需考虑单条数据因为规则的变化而重新计算需要迁移到那个库。当两个库也不够用是,以此类推,增加两个分库,分别吧table1和table3迁移到新的分库即可。

上述方案有一个缺点,就是在从一个库到4个库的过程中,单表的数据量一直在增长。当单表的数据量超过一定范围时,可能会带来性能问题。另外当开始预留的分表个数用尽,到了4物理库每库1个表的阶段,再进行扩容的话,不可避免的要再次从表上下手。

 

 

为了解决模式1的问题,我们接下来看看模式是如何处理的:

23bcfcc3e5b1d4e0ffb6a6f764658a319faacf99

图5.水平扩展模式2

 

模式2与模式1有类似之处,在扩展阶段,还是选择整表迁移的方式,为了简化说明,此处使用两个分表来做说明。

如上图5,扩展了分库,把table1整表迁移到新库中后,如果此时单边已经快接近500w,我们可以在每个分库中再创建一个分表,用于存放超过500w部分的数据。此时分库分表的规则就变为:

通过id % 2确定分库,然后通过id段[1+0.5kw, 1kw]的数据分表存放在table_0_1和table_1_1中。这样既满足的降低单表500w水平线值,也解决了热点数据库的问题。

如果随着时间的流逝,我们的数据库容量需要再次升级,也只需要重新购买两个实例,把table_0_1和table_1_1分别迁移到新的实例上即可,同理也可以通过为每个分库建立新分表来解决500w问题。

 

 

以上都是倍数增长的扩容方案,对于中小型的企业来说,数据库资源的开销很是很大的。用2实例到4实例的费用就增长了一倍,而从4实例到8实例又增长了一倍。那么非倍数扩容的方案是如何的呢?

 

其实原理是相通的,譬如我们从2实例扩容到3实例时,此时我们table_0和table_1很大可能已经饱和了(单表达到500w),我们可以新购一个实例,用于存放这两个“历史数据”表,另外两个则按照模式2进行扩展,这样单库热点问题还是平均到两个库上。当然,我们也可以通过给每个库增加一个分表,来达到每个分库都承担1/3的压力。只不过这种模式,对于分库分表的规则就提高和很大的复杂度。

9c406958e88efcfc9f3a576da4d11fd1783ecc0c

图6.水平扩展模式3

 

四、         结语

一个好的设计往往可以为后期的升级维护带来便利,数据库的水平扩容是一个很大的技术难点,但是通过优化我们的分库分表策,还是可以在一定程度上减轻工作量。这个准则无论是放到代码编写,产品设计或是生活的方方面面都一样适用,所以当我们遇到一个难以实现的设计时,也需要反思这种设计是否合理,是否会有更优的方案?

 

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
20天前
|
存储 SQL 关系型数据库
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
93 3
Mysql高可用架构方案
|
2月前
|
消息中间件 canal 缓存
项目实战:一步步实现高效缓存与数据库的数据一致性方案
Hello,大家好!我是热爱分享技术的小米。今天探讨在个人项目中如何保证数据一致性,尤其是在缓存与数据库同步时面临的挑战。文中介绍了常见的CacheAside模式,以及结合消息队列和请求串行化的方法,确保数据一致性。通过不同方案的分析,希望能给大家带来启发。如果你对这些技术感兴趣,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
163 6
项目实战:一步步实现高效缓存与数据库的数据一致性方案
|
2月前
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
3月前
|
文字识别 算法 API
视觉智能开放平台产品使用合集之人脸数据库容量是否支持扩容
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
3月前
|
存储 移动开发 数据库
视觉智能开放平台产品使用合集之人脸数据库容量是否支持扩容
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
22天前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
21天前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
51 5
|
26天前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
28 1
|
2月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
561 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
2月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
427 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案

热门文章

最新文章

下一篇
无影云桌面