MapReduce编程(二) 文件合并和去重

简介: 一、问题描述 对输入的多个文件进行合并,并剔除其中重复的内容,去重后的内容输出到一个文件中。file1.txt中的内容:20150101 x20150102 y20150103 x20150104 yfile2.

一、问题描述

对输入的多个文件进行合并,并剔除其中重复的内容,去重后的内容输出到一个文件中。

file1.txt中的内容:

20150101     x
20150102     y
20150103     x
20150104     y

file2.txt中的内容:

20150105     z
20150106     x
20150101     y
20150102     y

file3.txt中的内容:


20150103     x
20150104     z
20150105     y

二、MapReduce程序

编写MapReduce程序,运行环境参考我的上一篇博客Intellij Idea配置MapReduce编程环境

package com.javacore.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import java.io.IOException;


/**
 * Created by bee on 17/3/25.
 */
public class FileMerge {

    public static class Map extends Mapper<Object, Text, Text, Text> {
        private static Text text = new Text();

        public void map(Object key, Text value, Context content) throws IOException, InterruptedException {

            text = value;
            content.write(text, new Text(""));
        }
    }

    public static class Reduce extends Reducer<Text, Text, Text, Text> {
        public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
            context.write(key, new Text(""));
        }
    }


    public static void main(String[] args) throws Exception {

        // delete output directory
        FileUtil.deleteDir("output");
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://localhost:9000");
        String[] otherArgs = new String[]{"input/filemerge/f*.txt",
                "output"};
        if (otherArgs.length != 2) {
            System.err.println("Usage:Merge and duplicate removal <in> <out>");
            System.exit(2);
        }

        Job job = Job.getInstance();
        job.setJarByClass(FileMerge.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }
}

三、输出

20150101     x
20150101     y
20150102     y
20150103     x
20150104     y
20150104     z
20150105     y
20150105     z
20150106     x
目录
相关文章
|
4月前
|
分布式计算 大数据 Hadoop
揭秘MapReduce背后的魔法:从基础类型到高级格式,带你深入理解这一大数据处理利器的奥秘与实战技巧,让你从此不再是编程门外汉!
【8月更文挑战第17天】MapReduce作为分布式计算模型,是大数据处理的基石。它通过Map和Reduce函数处理大规模数据集,简化编程模型,使开发者聚焦业务逻辑。MapReduce分单阶段和多阶段,支持多种输入输出格式如`TextInputFormat`和`SequenceFileInputFormat`。例如,简单的单词计数程序利用`TextInputFormat`读取文本行并计数;而`SequenceFileInputFormat`适用于高效处理二进制序列文件。合理选择类型和格式可有效解决大数据问题。
74 1
|
4月前
|
存储 分布式计算 算法
MapReduce 处理压缩文件的能力
【8月更文挑战第12天】
54 4
|
6月前
|
分布式计算 Hadoop Java
MapReduce编程模型——在idea里面邂逅CDH MapReduce
MapReduce编程模型——在idea里面邂逅CDH MapReduce
90 15
|
6月前
|
分布式计算 Hadoop Java
Hadoop MapReduce编程
该教程指导编写Hadoop MapReduce程序处理天气数据。任务包括计算每个城市ID的最高、最低气温、气温出现次数和平均气温。在读取数据时需忽略表头,且数据应为整数。教程中提供了环境变量设置、Java编译、jar包创建及MapReduce执行的步骤说明,但假设读者已具备基础操作技能。此外,还提到一个扩展练习,通过分区功能将具有相同尾数的数字分组到不同文件。
66 1
|
6月前
|
数据采集 SQL 分布式计算
|
6月前
|
存储 分布式计算 Hadoop
MapReduce编程模型——自定义序列化类实现多指标统计
MapReduce编程模型——自定义序列化类实现多指标统计
52 0
|
7月前
|
分布式计算 资源调度 Hadoop
MapReduce分布式编程
MapReduce分布式编程
84 1
|
6月前
|
机器学习/深度学习 分布式计算 并行计算
MapReduce是一种用于并行计算的编程模型和处理大规模数据集的实现
MapReduce是一种用于并行计算的编程模型和处理大规模数据集的实现
95 0
|
6月前
|
存储 分布式计算 Hadoop
Hadoop生态系统详解:HDFS与MapReduce编程
Apache Hadoop是大数据处理的关键,其核心包括HDFS(分布式文件系统)和MapReduce(并行计算框架)。HDFS为大数据存储提供高容错性和高吞吐量,采用主从结构,通过数据复制保证可靠性。MapReduce将任务分解为Map和Reduce阶段,适合大规模数据集的处理。通过代码示例展示了如何使用MapReduce实现Word Count功能。HDFS和MapReduce的结合,加上YARN的资源管理,构成处理和分析大数据的强大力量。了解和掌握这些基础对于有效管理大数据至关重要。【6月更文挑战第12天】
262 0
|
6月前
|
分布式计算 自然语言处理 大数据
【大数据】MapReduce JAVA API编程实践及适用场景介绍
【大数据】MapReduce JAVA API编程实践及适用场景介绍
169 0

热门文章

最新文章

下一篇
DataWorks