使用Datax将MySQL中的数据导入到TableStore中

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
对象存储 OSS,内容安全 1000次 1年
简介: 背景 由于我们的数据在MySQL中的数据已经快接近亿级别,在访问MySQL并发读写的时候遇到了很大的瓶颈,严重的Block了我们的业务发展,主要从白天十点到晚上十点之前,并发访问的用户比较多,我们在写的前面加上了队列,系统后台自动同步。但是读上没有很好的办法解决,所以我们急需一个有较高吞吐量的实时

背景

由于我们的数据在MySQL中的数据已经快接近亿级别,在访问MySQL并发读写的时候遇到了很大的瓶颈,严重的Block了我们的业务发展,主要从白天十点到晚上十点之前,并发访问的用户比较多,我们在写的前面加上了队列,系统后台自动同步。但是读上没有很好的办法解决,所以我们急需一个有较高吞吐量的实时存储系统。

本来准备自己搭建Hbase集群,但是考虑到运维代价和成本,最终放弃了这个方案。后面给阿里云发工单,了解到阿里云有一个类似于Hbase的产品,叫做TableStore,简单看了一下,总结一下优势:高并发、低延迟、按量计费、全托管。经历了一段时间的调研和使用之后,发现能满足我们业务需求,最终决定选用TableStore。

业务代码改造完成之后,需要将历史数据同步过去,使用了阿里开源的Datax插件,因此把整个迁移流程记录下来,分享给大家。

使用一键部署工具迁移数据

# 简单的5步实现数据迁移
# 下载包

# 第一步,下载一键部署包
git clone https://github.com/red-chen/one_key_install_datax.git

# 第二步,安装Datax
cd one_key_install_datax
sh datax.sh install

# 第三步,修改配置 (可以参考下面的样例进行配置,如果需要更高级的特性,请直接查看插件的帮助文档)
vim mysql_to_ots.json

# 第四步,运行
sh datax.sh run mysql_to_ots.json

# 第五步,等待执行完毕
任务启动时刻                    : 2016-06-30 00:00:00
任务结束时刻                    : 2016-06-30 16:00:00
任务总计耗时                    :              57600s
任务平均流量                    :               1.2M/s
记录写入速度                    :            1736rec/s
读出记录总数                    :           100000000
读写失败总数                    :                   0

准备插件

配置模板

  • 请自行修改{}中的内容
{
    "job": {
        "setting": {
            "speed": {
                "channel": "1"
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",    
                    "parameter": {
                        "username": "{username}",
                        "password": "{passwd}",
                        "checkSlave":true,
                        "column": [
                            "{column_name}"
                        ],
                        "splitPk": "{pk}",
                        "connection": [
                            {
                                "table": [
                                    "{table_name}"
                                ],
                                "jdbcUrl": ["jdbc:mysql://{MySQL_HOST}:{MySQL_PORT}/{Database}"]
                            }
                        ]
                    }
                },
               "writer": {
                    "name": "otswriter",
                    "parameter": {
                        "endpoint":"{endpointnt}",
                        "accessId":"{accessId}",
                        "accessKey":"{accessKey}",
                        "instanceName":"{instanceName}",
                        "table":"{table}",
                        "primaryKey" : [
                            {"name":"{column_name}", "type":"{column_type}"}
                        ],
                        "column" : [
                            {"name":"{column_name}", "type":"{column_type}"}
                        ],
                        "writeMode" : "PutRow"
                    }
                }
            }
        ]
    }
}

样例

MySQL中的表

user_id type desc instance_count create_time
12009091 persion 李渊博 3 1467258591
12009092 company 北京天启传播有限公司 45 1460253572
  • | | | |
  • | | | |
  • | | | |
  • | | | |
  • 字段描述:

    • user_id 字符串
    • type 字符串
    • desc 字符串
    • instance_count 数值
    • create_time 数值

TableStore中的表

因为user_id是全局唯一的,所以我们只需要在TableStore创建一个PK为user_id的表即可,属性列不用创建,写入的时候直接创建

user_id

MySQL账户

  • host: tudou-user-rds.rds.cn-beiging.aliyun.com
  • port: 3163
  • user: root
  • passwd: 123456
  • db: meta
  • table: user_info

TableStore账户

样例配置

{
    "job": {
        "setting": {
            "speed": {
                "channel": "1"
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",    
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "checkSlave":true,
                        "column": [
                            "user_id", "type", "desc", "instance_count", "create_time"
                        ],
                        "splitPk": "user_id",
                        "connection": [
                            {
                                "table": [
                                    "user_info"
                                ],
                                "jdbcUrl": ["jdbc:mysql://tudou-user-rds.rds.cn-beiging.aliyun.com:3163/meta"]
                            }
                        ]
                    }
                },
               "writer": {
                    "name": "otswriter",
                    "parameter": {
                        "endpoint":"http://tudou-user.ots.cn-beiging.aliyun.com",
                        "accessId":"testaccessid",
                        "accessKey":"testaccesskey",
                        "instanceName":"tudou-user",
                        "table":"user_info",
                        "primaryKey" : [
                            {"name":"user_id", "type":"string"}
                        ],
                        "column" : [
                            {"name":"type", "type":"string"},
                            {"name":"desc", "type":"string"},
                            {"name":"instance_count", "type":"int"},
                            {"name":"create_time", "type":"int"}
                        ],
                        "writeMode" : "PutRow"
                    }
                }
            }
        ]
    }
}

性能调优

  • 前期工作和注意点

    • 因为我们数据量比较大,所以在启动迁移之前,我们通过工单主动联系了TableStore的工程师,帮我们把表按照第一列的数据范围拆分了多个分区,加快了数据的导入速度。
    • 在测试的时候,切记不要构造大量的数据,我们在测试的时候没有太注意,测试工程师搞了1千万的数据导入到TableStore中,因为TableStore是按量计费的,导致多交了很多钱!!
  • 在迁移的数据的时候,怎么调整速度?

    • 如果觉得导入速度太慢,可以适当的加大Channel数目,Channel的意义表示启动Datax的并发任务数目
  • 我在源DB上的数据类型是string,到目标源是否能强转为Int?

    • Datax使用了标准的Java转义方式,细节可以参考Java转义
目录
相关文章
|
5月前
|
安全 关系型数据库 MySQL
如何将数据从MySQL同步到其他系统
【10月更文挑战第17天】如何将数据从MySQL同步到其他系统
840 0
|
6天前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为'0'或'1',查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
|
3天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
1月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
254 43
|
1月前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
24天前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
46 9
|
1月前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
93 9
|
1月前
|
存储 关系型数据库 MySQL
MySQL进阶突击系列(09)数据磁盘存储模型 | 一行数据怎么存?
文中详细介绍了MySQL数据库中一行数据在磁盘上的存储机制,包括表空间、段、区、页和行的具体结构,以及如何设计和优化行数据存储以提高性能。
|
1月前
|
存储 SQL 关系型数据库
【YashanDB 知识库】MySQL 迁移至崖山 char 类型数据自动补空格问题
问题分类】功能使用 【关键字】char,char(1) 【问题描述】MySQL 迁移至崖山环境,字段类型源端和目标端都为 char(2),但应用存储的数据为'0'、'1',此时崖山查询该表字段时会自动补充空格 【问题原因分析】mysql 有 sql_mode 控制,检查是否启用了 PAD_CHAR_TO_FULL_LENGTH SQL 模式。如果启用了这个模式,MySQL 才会保留 CHAR 类型字段的尾随空格,默认没有启动。 #查看sql_mode mysql> SHOW VARIABLES LIKE 'sql_mode'; 【解决/规避方法】与应用确认存储的数据,正确定义数据
|
3月前
|
关系型数据库 MySQL Linux
Linux下mysql数据库的导入与导出以及查看端口
本文详细介绍了在Linux下如何导入和导出MySQL数据库,以及查看MySQL运行端口的方法。通过这些操作,用户可以轻松进行数据库的备份与恢复,以及确认MySQL服务的运行状态和端口。掌握这些技能,对于日常数据库管理和维护非常重要。
170 8