机器学习之——神经网络学习

简介: 很久没更新博客了,这一次我们继续之前的机器学习的课程,这一节我们讨论机器学习里面重要的一个算法——神经网络(Nerual Network)的学习部分。 神经网络的代价函数 首先我们要引入一些标记,以便在后面讨论中使用: 我们回想一下,在逻辑回归(Logistic Regression)问题中,我们的代价函数(Cost Function)如下: 在逻辑回归中,我们只有一个输出

很久没更新博客了,这一次我们继续之前的机器学习的课程,这一节我们讨论机器学习里面重要的一个算法——神经网络(Nerual Network)的学习部分。

神经网络的代价函数

首先我们要引入一些标记,以便在后面讨论中使用:


我们回想一下,在逻辑回归(Logistic Regression)问题中,我们的代价函数(Cost Function)如下:


在逻辑回归中,我们只有一个输出变量,又称作标量(Scalar),也只有一个因变量y,但是在神经网络中,我们可以有很多输出变量,我们的hø(x)是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,如下所示:


这个代价函数看起来复杂很多,但是背后的思想还是一样的。我们希望能够通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同的结果,然后再利用循环在K个预测中选择可能性最大的一个,将其与y中的实际数据进行对比。

归一化的哪一项只是排除了每一层的ø0后,每一层的ø矩阵的和。最里层的循环 j 循环所有的行(由si +1层的激活单元书决定),循环 i 则循环所有的列,由该层(si 层)的激活单元数所决定。


反向传播算法(Backpropagation Algorithm)

之前我们在计算神经网络预测结果的时候,我们采用了一种正向传播方法,我们从第一层开始正向一层一层进行计算,直到最后一层的hø(x)。

现在,为了计算代价函数的偏导数:


我们需要采用一种反向传播算法,也就是首先计算最后一层的误差,然后再一层一层反向求出各层的误差,直到倒数第二层。

我们用一个例子来说明反向传播算法。

假设,我们的训练集只有一个实例(x(1), y(1)),我们的神经网络是一个四层的神经网络,其中:K=4,SL=4,L=4 


我们从最后一层的误差开始计算,误差是激活单元的预测()与实际值(yk)之间的误差(k=1:K)。我们用来表示误差,则:


我们利用这个误差值来计算前一层的误差:


其中g'(Z(3))是S形函数的导数,g'(Z(3))=a(3).*(1-a(3))。而则是权重导致的误差的和。

下一步是继续计算第二层的误差:


因为第一层是输入变量,不存在误差。我们有了所有的误差的表达式之后,便可以计算代价函数的偏导数了,假设λ=0,即我们不做任何归一化处理时有:


重要的是清楚地知道上面式子中上下标的含义:


如果我们考虑归一化处理,并且我们的训练集是一个特征矩阵而非向量。在上面的特殊情况中,我们需要计算每一层的误差单元来计算代价函数的偏导数。在更为一般的情况中,我们同样需要计算每一层的误差单元,但是我们需要为整个训练集计算误差单元,此时的误差单元也是一个矩阵,我们用来表示这个误差矩阵。第 l 层的第 i 个激活单元收到第 j 个参数影响而导致的误差。

我们的算法表示为:


即首先使用正向传播方法计算出每一层的激活单元,利用训练集的结果与神经网络预测的结果求出最后一层的误差,然后利用该误差运用反向传播法计算出直至第二层的所有误差。

在求出了之后,我们便可以计算代价函数的偏导数了,计算方法如下:


在Octave或者Matlab中,如果我们使用 fminuc 这样的优化算法求解求出权重矩阵,我们需要将矩阵首先展开为向量,再利用算法求出最优解后再重新转换回矩阵。

假设我们有三个权重矩阵,theta1,theta2和theta3,尺寸分别为10*11,10*11和1*11,下面的代码可以实现这样的转换:


这一次我们讨论到这里,下一回我们继续学习神经网络的梯度检验(Gradient Checking)随机初始化(Random Initialization)

相关文章
|
23天前
|
机器学习/深度学习 数据采集 人工智能
Machine Learning机器学习之贝叶斯网络(BayesianNetwork)
Machine Learning机器学习之贝叶斯网络(BayesianNetwork)
|
1月前
|
消息中间件 网络协议 C++
C/C++网络编程基础知识超详细讲解第三部分(系统性学习day13)
C/C++网络编程基础知识超详细讲解第三部分(系统性学习day13)
|
1月前
|
机器学习/深度学习 安全 算法
利用机器学习优化网络安全防御机制
【2月更文挑战第23天】 在数字化时代,网络安全已成为维护信息完整性、保障用户隐私的关键挑战。随着攻击手段的日益复杂化,传统的防御策略逐渐显得力不从心。本文通过引入机器学习技术,探索其在网络安全防御中的应用及优化路径。首先,概述了当前网络安全面临的主要威胁和机器学习的基本概念;其次,分析了机器学习在识别恶意行为、自动化响应等方面的潜力;最后,提出了一个基于机器学习的网络安全防御框架,并通过案例分析展示了其有效性。本研究旨在为网络安全领域提供一种创新的防御思路,以适应不断演变的网络威胁。
31 2
|
2天前
|
存储 网络协议 关系型数据库
Python从入门到精通:2.3.2数据库操作与网络编程——学习socket编程,实现简单的TCP/UDP通信
Python从入门到精通:2.3.2数据库操作与网络编程——学习socket编程,实现简单的TCP/UDP通信
|
13天前
|
机器学习/深度学习 人工智能 运维
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
|
16天前
|
JavaScript Java 测试技术
基于Java的网络类课程思政学习系统的设计与实现(源码+lw+部署文档+讲解等)
基于Java的网络类课程思政学习系统的设计与实现(源码+lw+部署文档+讲解等)
30 0
基于Java的网络类课程思政学习系统的设计与实现(源码+lw+部署文档+讲解等)
|
25天前
|
机器学习/深度学习 弹性计算 数据可视化
玩ST、肿瘤研究的来学习一下!16分Nature子刊的单细胞空间转录组+机器学习
Nature Communications 发表了一项关于空间转录组和机器学习在肿瘤研究中的应用。研究聚焦于HPV阴性口腔鳞状细胞癌,通过整合单细胞和空间转录组分析,揭示了肿瘤核心(TC)和前沿边缘(LE)的独特转录特征。TC和LE的基因表达模式与多种癌症的预后相关,其中LE基因标志关联不良预后,而TC则与较好预后相关。利用机器学习,研究人员建立了预测模型,识别出跨癌症类型的保守TC和LE特征。此外,他们还分析了RNA剪接动态,发现了潜在的治疗脆弱性。这项工作为肿瘤生物学和靶向治疗提供了新见解,并为药物开发提供了依据。
24 0
|
1月前
|
机器学习/深度学习 算法 流计算
机器学习PAI常见问题之编译包下载不了如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
1月前
|
机器学习/深度学习 数据采集 安全
基于机器学习的网络安全威胁检测系统
【2月更文挑战第30天】 随着网络技术的迅猛发展,网络安全问题日益凸显,传统的安全防御机制面临新型攻击手段的挑战。本文提出一种基于机器学习的网络安全威胁检测系统,通过构建智能算法模型,实现对异常流量和潜在攻击行为的实时监测与分析。系统融合了深度学习与行为分析技术,旨在提高威胁识别的准确性与响应速度,为网络环境提供更为坚固的安全防线。