【OpenCV学习】基于轮廓寻找的视频流运动检测

简介: 作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/ #include "cv.h" #include "highgui.h" #include #include #include #include #include // vari...

作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/

#include "cv.h"
#include "highgui.h"
#include <time.h>
#include <math.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
// various tracking parameters (in seconds) //跟踪的参数(单位为秒)
const double MHI_DURATION = 0.5;//0.5s为运动跟踪的最大持续时间
const double MAX_TIME_DELTA = 0.5;
const double MIN_TIME_DELTA = 0.05;
const int N = 3;
//
const int CONTOUR_MAX_AERA = 1000;
// ring image buffer 圈出图像缓冲
IplImage **buf = 0;//指针的指针
int last = 0;
// temporary images临时图像
IplImage *mhi = 0; // MHI: motion history image
CvFilter filter = CV_GAUSSIAN_5x5;
CvConnectedComp *cur_comp, min_comp;
CvConnectedComp comp;
CvMemStorage *storage;
CvPoint pt[4];
//  参数:
//  img – 输入视频帧
//  dst – 检测结果
void  update_mhi( IplImage* img, IplImage* dst, int diff_threshold )
{
    double timestamp = clock()/100.; // get current time in seconds 时间戳
    CvSize size = cvSize(img->width,img->height);
    // get current frame size,得到当前帧的尺寸
    int i, idx1, idx2;
    IplImage* silh;
    IplImage* pyr = cvCreateImage( cvSize((size.width & -2)/2, (size.height & -2)/2), 8, 1 );
    CvMemStorage *stor;
    CvSeq *cont;

    /*先进行数据的初始化*/
    if( !mhi || mhi->width != size.width || mhi->height != size.height )
    {
        if( buf == 0 ) //若尚没有初始化则分配内存给他
        {
            buf = (IplImage**)malloc(N*sizeof(buf[0]));
            memset( buf, 0, N*sizeof(buf[0]));
        }
        
        for( i = 0; i < N; i++ )
        {
            cvReleaseImage( &buf[i] );
            buf[i] = cvCreateImage( size, IPL_DEPTH_8U, 1 );
            cvZero( buf[i] );// clear Buffer Frame at the beginning
        }
        cvReleaseImage( &mhi );
        mhi = cvCreateImage( size, IPL_DEPTH_32F, 1 );
        cvZero( mhi ); // clear MHI at the beginning
    } // end of if(mhi)
    /*将当前要处理的帧转化为灰度放到buffer的最后一帧中*/
    cvCvtColor( img, buf[last], CV_BGR2GRAY ); // convert frame to grayscale
    /*设定帧的序号*/
    /*
    last---->idx1
     ^
     |
     |
     |
    idx2<-----(last+1)%3
    */
    
    idx1 = last;
    idx2 = (last + 1) % N; // index of (last - (N-1))th frame
    last = idx2;
    // 做帧差
    silh = buf[idx2];//差值的指向idx2 |idx2-idx1|-->idx2(<-silh)
    cvAbsDiff( buf[idx1], buf[idx2], silh ); // get difference between frames
    
    // 对差图像做二值化
    cvThreshold( silh, silh, 30, 255, CV_THRESH_BINARY ); //threshold it,二值化
    
    cvUpdateMotionHistory( silh, mhi, timestamp, MHI_DURATION ); // update MHI
 
    cvConvert( mhi, dst );//将mhi转化为dst,dst=mhi   
    
    // 中值滤波,消除小的噪声
    cvSmooth( dst, dst, CV_MEDIAN, 3, 0, 0, 0 );
    
    
    cvPyrDown( dst, pyr, CV_GAUSSIAN_5x5 );// 向下采样,去掉噪声,图像是原图像的四分之一
    cvDilate( pyr, pyr, 0, 1 );  // 做膨胀操作,消除目标的不连续空洞
    cvPyrUp( pyr, dst, CV_GAUSSIAN_5x5 );// 向上采样,恢复图像,图像是原图像的四倍
    //
    // 下面的程序段用来找到轮廓
    //
    // Create dynamic structure and sequence.
    stor = cvCreateMemStorage(0);
    cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint) , stor);
    
    // 找到所有轮廓
    cvFindContours( dst, stor, &cont, sizeof(CvContour),
                    CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));
    // 直接使用CONTOUR中的矩形来画轮廓
    for(;cont;cont = cont->h_next)
    {
              CvRect r = ((CvContour*)cont)->rect;
              if(r.height * r.width > CONTOUR_MAX_AERA) // 面积小的方形抛弃掉
              {
                  cvRectangle( img, cvPoint(r.x,r.y),
                          cvPoint(r.x + r.width, r.y + r.height),
                          CV_RGB(255,0,0), 1, CV_AA,0);
              }
    }
    // free memory
    cvReleaseMemStorage(&stor);
    cvReleaseImage( &pyr );
}
int main(int argc, char** argv)
{
    IplImage* motion = 0;
    CvCapture* capture = 0;
    
    if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
        capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );//摄像头为视频来源
    else if( argc == 2 )
        capture = cvCaptureFromAVI( argv[1] );//AVI为视频来源
    if( capture )
    {
        cvNamedWindow( "Motion", 1 );//建立窗口
        for(;;)
        {
            IplImage* image;
            if( !cvGrabFrame( capture ))//捕捉一桢
                break;
            image = cvRetrieveFrame( capture );//取出这个帧
            if( image )//若取到则判断motion是否为空
            {
                if( !motion )
                {
                    motion = cvCreateImage( cvSize(image->width,image->height), 8, 1 );
                    //创建motion帧,八位,一通道
                    cvZero( motion );
                    //零填充motion
                    motion->origin = image->origin;
                    //内存存储的顺序和取出的帧相同
                }
            }
            update_mhi( image, motion, 60 );//更新历史图像
            cvShowImage( "Motion", image );//显示处理过的图像
            if( cvWaitKey(10) >= 0 )//10ms中按任意键退出
                break;
        }
        cvReleaseCapture( &capture );//释放设备
        cvDestroyWindow( "Motion" );//销毁窗口
    }
    return 0;
} 

 

作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/


               作者:gnuhpc
               出处:http://www.cnblogs.com/gnuhpc/
               除非另有声明,本网站采用知识共享“署名 2.5 中国大陆”许可协议授权。


分享到:

目录
相关文章
|
1月前
|
机器学习/深度学习 监控 算法
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
46 3
|
1月前
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
83 1
|
1月前
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
64 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
1月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
67 0
|
4月前
|
机器学习/深度学习 传感器 算法
OpenCV4工业缺陷检测的六种方法
OpenCV4工业缺陷检测的六种方法
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
131 2
|
5月前
|
存储 编解码 算法
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
91 0
|
4月前
|
计算机视觉 Python
opencv 处理图像去噪的几种方法学习
OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例: 均值滤波:使用像素邻域的灰度均值代替该像素的值。
64 0
|
5月前
|
监控 安全 计算机视觉
实战 | 18行代码轻松实现人脸实时检测【附完整代码与源码详解】Opencv、人脸检测
实战 | 18行代码轻松实现人脸实时检测【附完整代码与源码详解】Opencv、人脸检测
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
335 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解