网络分层模型

简介: 目前存在的两种网络分层模型:OSI模型和TCP/IP模型。OSI模型一共分为七层,TCP/IP模型和OSI模型类似,但是只分为四层。OSI模型OSI的全程是Open Systems Interconncection,即开放系统互联,它由ISO(International Organization for Standardization)制定。OSI是网络通信的一种

目前存在的两种网络分层模型:OSI模型和TCP/IP模型。OSI模型一共分为七层,TCP/IP模型和OSI模型类似,但是只分为四层。

OSI模型

OSI的全程是Open Systems Interconncection,即开放系统互联,它由ISO(International Organization for Standardization)制定。OSI是网络通信的一种通用框架,它分为七层,并且定义了在每一层上数据的处理方法。

层数 层名 备注
7 应用层(Application)
6 表示层(Presentation)
5 会话层(Session)
4 传输层(Transport)
3 网络层(Network) 路由器
2 数据链路层(Data Link) 交换机
1 物理层(Physical) 网卡、集线器(Hub)

英语速记:All People Seem To Need Data Processing.

第七层——应用层(Application)

这里的“应用”要和应用程序相区别。
当用户使用浏览器来打开网页时,需要利用DNS提供的域名解析服务,来获取网址对应的IP地址,然后再通过另外一个协议HTTP来下载页面内容。在这个过程中出现的两个协议(DNS和HTTP)都是工作在应用层上的协议。

应用层的其他常用协议:

  • FTP:文件传输协议,用来在客户机和FTP服务器之间传输文件。
  • DHCP:动态主机配置协议,DHCP服务器为客户机动态分配IP地址。
  • POP3:邮件接收协议,用于从POP3服务器接收邮件。
  • SMTP:邮件发送协议,用户通过SMTP服务器发送邮件。

第六层——表示层(Presentation)

这里的“表示”是指数据的表示。
该层的主要功能:转换压缩加密
工作在表示层的加密协议最常用的是SSL(Secure Sockets Layer)。加密协议并不一定需要工作在表示层,如IPSec(Internet Protocol Security,因特网协议安全)就工作在第三层网络层中。

第五层——会话层(Session)

可以把“会话”理解为两个应用程序进程之间的逻辑连接,两个应用程序通过这个逻辑连接在一段时间内交换数据。会话层的作用就是为创建、管理和终止会话提供必要的方法。这些方法一般以API(Application Program Interface,应用程序编程接口)的形式出现。常用的API由NetBIOS(Network Basic Input/Output System,网络基本输入/输出系统)、RPC(Remote Procedure Call,远程过程调用)和Socket API。

会话层还负责管理和确定传输模式。计算机可以由三种模式来传输数据:单向(Simplex)、半双工(Half-Duplex)、全双工(Full-Duplex)。

  • Simplex:数据只可以单向传输。
  • Half-Duplex:允许数据单向传输,但是一个时刻只能有一个方向传输,不能同时双向传输。
  • Full-Duplex:数据可以同时双向传输。

第四层——传输层(Transport)

传输层提供数据传输的服务。这里的“传输”指的是端对端(End-to-End)或者主机对主机(Host-to-Host)的传输。

传输层上最重要的两个协议是TCP和UDP。TCP是面向连接的协议(Connection-Oriented),UDP是无连接的协议(Connection-Less)。

TCP(Transmission Control Protocol,传输控制协议)

TCP在传输数据之前必须先建立一个连接。TCP做了很多工作来提供可靠的数据传输,包括建立、管理和终止连接,确认和重传。同时TCP还提供分段和重组,流量控制(Flow Control)等。

UDP(User Datagram Protocol,用户数据报协议)

UDP是一种简单的传输层协议,所以它并不能提供可靠的数据传输。简单地说,UDP只是把应用程序发给它的数据打包成一个UDP数据报(UDP Datagram),然后再把这个数据报传给IP。
TCP会把应用程序发来的数据根据需要分成若干个大小合适的TCP段(TCP Segment),而UDP却只是简单地把所有发送来的数据打包成一个UDP数据报,所以我们在编写使用UDP的程序时,不能一次性向UDP写入太多数据,否则可能会导致IP分段的后果。

由于可能有很多应用程序同时在使用TCP/UDP,它们都会把数据交给TCP/UDP,而TCP/UDP也会接收来自IP的、包含指向不同应用程序的数据,所以就需要有一种方法来区别(标识)应用程序,这种方法就是通过端口号(Port)来进行多路复用多路分解。端口号是一个16位的二进制整数,其取值范围是0~65535。

多路复用(Multiplexing)
多路复用是只当应用程序把数据交给TCP或UDP时,TCP会把这些数据分成若干个TCP段,UDP则会产生一个UDP数据报。在这些TCP段和UDP数据报中,会填入应用程序指定的源端口号和目标端口号,源端口号用于标识发送的应用程序(进程),目标端口号用于指明在目标机器上应该接收数据的目标应用程序。

多路分解(Demultiplexing)
多路分解是多路复用的逆过程。当在目标机器上的TCP或者UDP接收到TCP段和UDP数据报时,会检查它们的目标端口号,然后根据不同的目标端口号把数据分发给不同的应用程序(进程)。

第三层——网络层(Network)

网络层关心的主要是如何把数据从一个设备发送到另一个设备。网络层需要提供三个最基本的功能:地址路由分段和重组。同时还需要一些附加的功能,比如错误处理和诊断。

网络层上最重要的协议IP(Internet Protocol),就是为了这些功能而设计的。目前IP一共有两个版本IPv4和IPv6。两者最主要的区别是使用了不同位数的二进制整数作为地址:IPv4使用32位二进制地址,IPv6使用128位二进制地址。IPv4的地址表示方法一般为用点隔开的4个数字,每个数字的取值范围是0~255,即一个字节的大小,如192.168.1.1。IPv6的表示方法为用冒号隔开的8个字(word,16位二进制),每个字都用十六进制来表示,如2012:0000:4528:7D76:3C2B:05AD:3F57:1C98。

第二层——数据链路层(Data Link)

网络层关心的是如何把数据从一个设备发送到另外一个设备,这另外一个设备有可能在本地网络中或者在一个很远的网络中。数据链路层关心的是如何把数据发送到本地网络中去。我们平时常说的LAN(Local Area Network,局域网)技术,如以太网(Ethernet)、令牌环网(Token Ring)、光纤分布数据接口(FDDI)和802.11(WiFi)都定义在这一层。
数据链路层又分为两个子层:逻辑链路控制层(Logical Link Control)介质访问控制层(Media Access Control)

数据链路层还有一个重要的概念,即MAC地址,也有人称其为物理地址、硬件地址、以太网地址等。每一个网卡(Network Interface Card)都有一个唯一的MAC地址,数据链路层通过MAC地址来确保数据能够正确被发送到目标设备。MAC地址是一个48位二进制整数,通常的表示方法是用-隔开的6个十六进制整数,如14-FE-B5-B0-2B-96。

第一层——物理层(Physical)

物理层位于OSI的底层,所有其他层的数据最终都必须经由物理层才能发送出去。物理层的功能包括:

  • 硬件规范的定义,如电缆、连接器、无线接收器等的工作方式,网卡、集线器(Hub)等网络设备也工作在物理层。
  • 编码和信号,物理层把计算机中的二进制0和1转换成可以在物理介质上传输的信号。
  • 在把数据转换成信号后(如对于双绞线电缆则是电子脉冲信号),物理层负责信号的实际发送和接收。

TCP/IP模型

TCP/IP模型分为四层:应用层(Application)、传输层(Host-to-Host Transport)、互联网层(Internet)、网络接口层(Network Interface)。

在TCP/IP模型中并不包含物理层。另外,两个重要的协议ARP(Address Resolution Protocol,地址解析协议)和RARP(Reverse Address Resolution Protocol,反向地址转换协议),在OSI模型中一般被认为是在位于第二层数据链路层和第三层网络层之间,而在TCP/IP模型中则位于网络接口层。

总结

发送方应用程序的数据总是从最上层开始,层层向下,最终经由物理层发送出去;相应的,在接收方的物理层接收到数据后,层层向上,最终经由应用层分发到具体的应用程序进程中。
在数据层层向下的过程中,每一层都会对数据进行一些封装处理(如打包或者编码);而在数据层层向上的过程中,每一层都会对数据进行一些逆处理(如解包或者解码)。这些对数据的处理和逆处理的过程就是为了实现该层的服务。

目录
相关文章
|
18天前
|
机器学习/深度学习 存储 算法
【轻量化网络】概述网络进行轻量化处理中的:剪枝、蒸馏、量化
【轻量化网络】概述网络进行轻量化处理中的:剪枝、蒸馏、量化
80 0
|
18天前
|
机器学习/深度学习 人工智能 缓存
Griffin模型的主要架构和特点
【2月更文挑战第16天】Griffin模型的主要架构和特点
105 2
Griffin模型的主要架构和特点
|
8月前
|
缓存 运维 网络协议
掌握网络架构核心!了解为什么要分层
掌握网络架构核心!了解为什么要分层
26 0
|
18天前
|
缓存 Java 程序员
I/O详解与五种网络I/O模型(1)
为什么会有多种网络模型? 在网络I/O之中,I/O操作往往会涉及到两个系统对象,一个是用户空间调用I/O的进程或者线程,另一个是内核空间的内核系统,当发生I/O操作时,会经历以下两个阶段:
63 0
|
18天前
|
Unix Linux 程序员
I/O详解与五种网络I/O模型(2)
 上述模型只是描述了使用 select()接口同时从多个客户端接收数据的过程;由于 select()接口可以同时对多个句柄进行读状态、写状态和错误状态的探测,所以可以很容易构建为多个客户端提供独立问答服务的服务器系统。
35 0
|
18天前
分层模型的优点
分层模型的优点。
68 0
|
12月前
|
架构师 测试技术 uml
我懂了,原来这就是4+1架构模型!
我懂了,原来这就是4+1架构模型!
1546 0
|
机器学习/深度学习 编解码 算法
CVPR‘2023 即插即用系列! | BiFormer: 通过双向路由注意力构建高效金字塔网络架构
CVPR‘2023 即插即用系列! | BiFormer: 通过双向路由注意力构建高效金字塔网络架构
807 0
|
网络协议 大数据 网络性能优化
大数据开发基础的计算机网络的体系结构和分层模型
在大数据开发中,计算机网络是一个非常重要的概念。了解计算机网络的体系结构和分层模型对于实现高效的大数据处理和传输十分关键。
127 0
|
网络协议 网络性能优化 网络架构
网络分层参考模型
传输层 作用: (1) 数据分段 (2) 根据数据不同,来决定数据是否可靠传输 视频流,语音流:不可靠----UDP(用户数据报协议) 文件、网页、邮件:可靠----TCP(传输控制协议) 保证可靠机制 (1) 三次握手:建立连接TCP 1 SYN  seq=a 2 ACK、SYN    seq=b   ack=a+1 ack:确认号 确认上一个报文;告诉对方发送数据的序列号。请求和确认机制 3ACK seq:序列号  seq=a+1 ack=b+1   seq=b+1  500(字节) seq=b+1+500      500(字节) ack=b+1+500+

热门文章

最新文章