PgSQL · 特性介绍 · 全文搜索介绍

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云数据库 RDS SQL Server,基础系列 2核4GB
简介: 背景 在日常的数据处理中,我们经常会有这样的需求:从一个文本中寻找某个字符串(比如某个单词)。 对这个需求,我们可以用类似这样的SQL完成:SELECT * FROM tbl WHERE text LIKE ‘%rds PostgreSQL%’;(找到含有“rds PostgreSQL”的文本)

背景

在日常的数据处理中,我们经常会有这样的需求:从一个文本中寻找某个字符串(比如某个单词)。

对这个需求,我们可以用类似这样的SQL完成:SELECT * FROM tbl WHERE text LIKE ‘%rds PostgreSQL%’;(找到含有“rds PostgreSQL”的文本)。

现在我们考虑一些特殊的情形:

  1. 需要查找的文本特别多,特别大;

  2. 不做单纯的字符串匹配,而是考虑自然语言的一些特性,比如匹配某一类字符串(域名、人名)或者匹配单词的所有形式(不考虑它的词性及变化,比如have,has,had都匹配出来);

  3. 对中文自然语言特性的支持。

那么此时再用以上的 “SELECT … LIKE …” 就不明智了,因为对数据库来说,这样的SQL必然走的是全表扫描,那么当文本特别多、特别大的时候,查找效率就会很低。

另外,这样的SQL也不会智能到可以处理自然语言的特性。

怎么办呢?PostgreSQL(以下简称PG)提供了强大的全文搜索功能可以满足这样的需求。

对文本的预处理

全文搜索首先需要对文本预处理,包括3步:

  1. 将文本分解成一个个token,这些token可以是数字、单词、域名、人名、email的格式等等。在PG中可以定义一个parser来做这个工作。

  2. 将第一步分解成的token标准化,所谓的标准化就是利用一些规则将token分好类(比如人名是一类、域名是一类等等)。标准化后的token我们称之为lexeme。在PG中是通过定义一个词典来做这个工作。PG里最简单的词典simple的标准化过程就是将大写字母转成小写字母。

  3. 对文本打分,优化查找过程,比如对于待查找的词,文本1匹配的数量大于文本2匹配的数量,那么在这个查找过程,文本1的优先级大于文本2的优先级。

在PG中,以上对文本的预处理可以通过一个函数to_tsvector来完成,函数的返回值是tsvector这个数据类型。

另外,对于待查找的单词,我们也要用to_tsquery这个函数包装起来,函数的返回值是tsquery这个数据类型。

一个简单的例子见下面,to_tsquery里的参数可以使用运算符(&:与、|:或、!:非):

SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
 ?column?
----------
 t

Quick Start

在了解了这些概念之后,我们用实际的例子来玩一玩PG的全文搜索。

我们在client端输入以下命令,\dFp显示的是所有的parser,这里只有一个默认parser(default)。

\dFp+ default 显示默认parser(default)的详细信息:parse的过程(5个函数),parse的Token类型(asciihword, asciiword…)。

sbtest=# \dFp
        List of text search parsers
   Schema   |  Name   |     Description
------------+---------+---------------------
 pg_catalog | default | default word parser
(1 row)

sbtest=# \dFp+ default
    Text search parser "pg_catalog.default"
     Method      |    Function    | Description
-----------------+----------------+-------------
 Start parse     | prsd_start     | (internal)
 Get next token  | prsd_nexttoken | (internal)
 End parse       | prsd_end       | (internal)
 Get headline    | prsd_headline  | (internal)
 Get token types | prsd_lextype   | (internal)

        Token types for parser "pg_catalog.default"
   Token name    |               Description
-----------------+------------------------------------------
 asciihword      | Hyphenated word, all ASCII
 asciiword       | Word, all ASCII
 blank           | Space symbols
 email           | Email address
 entity          | XML entity
 file            | File or path name
 float           | Decimal notation
 host            | Host
 hword           | Hyphenated word, all letters
 hword_asciipart | Hyphenated word part, all ASCII
 hword_numpart   | Hyphenated word part, letters and digits
 hword_part      | Hyphenated word part, all letters
 int             | Signed integer
 numhword        | Hyphenated word, letters and digits
 numword         | Word, letters and digits
 protocol        | Protocol head
 sfloat          | Scientific notation
 tag             | XML tag
 uint            | Unsigned integer
 url             | URL
 url_path        | URL path
 version         | Version number
 word            | Word, all letters
(23 rows)

输入\dF+ english,给出标准化各类英语token时所用到的dictionary:

sbtest=# \dF+ english
Text search configuration "pg_catalog.english"
Parser: "pg_catalog.default"
      Token      | Dictionaries
-----------------+--------------
 asciihword      | english_stem
 asciiword       | english_stem
 email           | simple
 file            | simple
 float           | simple
 host            | simple
 hword           | english_stem
 hword_asciipart | english_stem
 hword_numpart   | simple
 hword_part      | english_stem
 int             | simple
 numhword        | simple
 numword         | simple
 sfloat          | simple
 uint            | simple
 url             | simple
 url_path        | simple
 version         | simple
 word            | english_stem

创建以default为parser的配置defcfg,并增加token映射,这里我们只关心email, url, host:

sbtest=# CREATE TEXT SEARCH CONFIGURATION defcfg (PARSER = default);
CREATE TEXT SEARCH CONFIGURATION
sbtest=# ALTER TEXT SEARCH CONFIGURATION defcfg ADD MAPPING FOR email,url,host WITH simple;
ALTER TEXT SEARCH CONFIGURATION

建好配置defcfg后,我们看看利用defcfg对文本进行处理的结果。这里使用to_tsvector函数,可以看到email,url,host都被识别出来了:

sbtest=# select to_tsvector('defcfg','xxx yyy xxx@taobao.com yyy@sina.com http://google.com/123 12345 ');
                              to_tsvector
-----------------------------------------------------------------------
 'google.com':4 'google.com/123':3 'xxx@taobao.com':1 'yyy@sina.com':2
(1 row)

在实际对表内的文本做全文搜索时,一般对目标列建立gin索引(也就是倒排索引,详情见官方文档),这样可以加快查询效率,具体操作如下:

sbtest=# CREATE TABLE t1(c1 text);
CREATE TABLE
sbtest=# CREATE INDEX c1_idx ON t1 USING gin(to_tsvector('defcfg', c1));
CREATE INDEX
sbtest=# \d t1
     Table "public.t1"
 Column | Type | Modifiers
--------+------+-----------
 c1     | text |
Indexes:
    "c1_idx" gin (to_tsvector('defcfg'::regconfig, c1))

这里我们插入2条文本,并做一些匹配:

sbtest=# INSERT INTO t1 VALUES('xxx yyy xxx@taobao.com yyy@sina.com http://google.com 12345');
INSERT 0 1
sbtest=# INSERT INTO t1 VALUES('xxx yyy xxx@gmail.com yyy@sina.com http://google.com 12345');
INSERT 0 1
sbtest=# select * from t1;
                             c1
-------------------------------------------------------------
 xxx yyy xxx@taobao.com yyy@sina.com http://google.com 12345
 xxx yyy xxx@gmail.com yyy@sina.com http://google.com 12345
(2 rows)

sbtest=# select * from t1 where to_tsvector('defcfg',c1) @@ 'google.com';
                             c1
-------------------------------------------------------------
 xxx yyy xxx@taobao.com yyy@sina.com http://google.com 12345
 xxx yyy xxx@gmail.com yyy@sina.com http://google.com 12345
(2 rows)

sbtest=# select * from t1 where to_tsvector('defcfg',c1) @@ to_tsquery('google.com & yyy@sina.com');
                             c1
-------------------------------------------------------------
 xxx yyy xxx@taobao.com yyy@sina.com http://google.com 12345
 xxx yyy xxx@gmail.com yyy@sina.com http://google.com 12345
(2 rows)

sbtest=# select * from t1 where to_tsvector('defcfg',c1) @@ to_tsquery('google.com & xxx@gmail.com');
                             c1
------------------------------------------------------------
 xxx yyy xxx@gmail.com yyy@sina.com http://google.com 12345
(1 row)

以上的操作都是针对英文,实际上对中文也是支持的,不过会稍微麻烦点,因为中文的token必须通过分词才能产生,所以需要先装分词的组件scws和zhparser,具体可以参考这篇博文

结语

本文对PG的全文搜索做了一个入门级的介绍,方便用户快速上手,如果需要对全文搜索作更深入的研究,建议阅读官方文档第12章

目录
相关文章
|
并行计算 关系型数据库 测试技术
PgSQL · 特性分析 · PostgreSQL 9.6 让多核并行起来
背景 经过多年的酝酿(从支持work process到支持动态fork共享内存,再到内核层面支持并行计算),PostgreSQL 的多核并行计算功能终于在2016年发布的9.6版本中正式上线,为PG的scale up能力再次拔高一个台阶,标志着开源数据库已经攻克了并行计算的难题。 相信有很多小伙伴已经开始测试了。 在32物理核的机器上进行了测试,重计算的场景,性能程线性提升。 目前并行计算支
5647 0
|
存储 缓存 NoSQL
PgSQL · 引擎介绍 · 向量化执行引擎简介
摘要 本文为大家介绍一下向量化执行引擎的引入原因,前提条件,架构实现以及它能够带来哪些收益。 希望读者能够通过对这篇文章阅读能够对向量化执行引擎的应用特征与架构有一个概要的认识。 关键字 向量化执行引擎, MonetDB,Tuple, 顺序访问,随机访问, OLAP, MPP,火山模型,列存表,编译执行 背景介绍 过去的20-30年计算机硬件能力的持续发展,使得计算机的计算能力飞速提升。然后
5819 1
|
SQL 自然语言处理 关系型数据库
|
关系型数据库 数据库 PostgreSQL
PgSQL · 特性分析 · 浅析PostgreSQL 中的JIT
--- title: PgSQL · 特性分析 · 浅析PostgreSQL 中的JIT author: 卓刀 --- ## 背景 估计很多同学看过之前的月报[PgSQL · 特性分析· JIT 在数据仓库中的应用价值](http://mysql.taobao.org/monthly/2016/11/10/),对JIT(just in time)和LLVM(Low Level Vir
2855 0
|
缓存 监控 关系型数据库
MySQL · 引擎特性 · WAL那些事儿
前言 日志先行的技术广泛应用于现代数据库中,其保证了数据库在数据不丢的情况下,进一步提高了数据库的性能。本文主要分析了WAL模块在MySQL各个版本中的演进以及在阿里云新一代数据库POLARDB中的改进。
2362 0
|
存储 关系型数据库 MySQL
MySQL · 特性介绍 · 一些流行引擎存储格式简介
1 概述 本文简要介绍了一些存储引擎存储结构,包括InnoDB, TokuDB, RocksDB, TiDB, CockroachDB, 供大家对比分析 InnoDB InnoDB 底层存储结构为B+树,结构如下 B树的每个节点对应innodb的一个page,page大小是固定的,一般设为16k。
1982 0
|
自然语言处理 关系型数据库 MySQL
|
关系型数据库 MySQL 索引
MySQL · 引擎介绍 · Sphinx源码剖析(二)
在本节中,我将会介绍索引文件sph的生成,从上一节我们得知sph文件保存了Sphinx的索引元信息以及一些索引相关的配置信息 SPH文件生成 先来看代码,其中sph文件的生成是在CSphIndex_VLN::WriteHeader这个函数中: bool CSphIndex_VLN::WriteHeader ( const BuildHeader_t & tBuildHeader,
1862 0
|
存储 缓存 关系型数据库
PgSQL · 代码浅析 · PostgreSQL 可靠性分析
背景 PostgreSQL 可靠性与大多数关系数据库一样,都是通过REDO来保障的。 群里有位童鞋问了一个问题,为什么PostgreSQL的REDO块大小默认是8K的,不是512字节。 这位童鞋提问的理由是,大多数的块设备扇区大小是512字节的,512字节可以保证原子写,而如果REDO的块大于512字节,可能会出现partial write。 那么PostgreSQL的redo(wal) 块
2437 0