Elasticsearch如何配置日志

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
日志服务 SLS,月写入数据量 50GB 1个月
简介: Elasticsearch如何配置日志

要配置Elasticsearch的日志,您可以按照以下步骤进行:

  1. 找到日志配置文件:
    在Elasticsearch的安装目录中,导航到config文件夹。在该文件夹中,找到名为log4j2.properties的文件。这是Elasticsearch的日志配置文件。

  2. 编辑日志配置文件:
    使用文本编辑器打开log4j2.properties文件,并进行编辑。

    • 若要更改日志级别,找到以下行:

      logger.action.level = info
      

      info更改为您所需的日志级别,例如debugwarnerror

    • 若要更改日志输出位置,找到以下行:

      appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}.log
      

      您可以更改${sys:es.logs.base_path}${sys:es.logs.cluster_name}.log来指定日志文件的路径和名称。

    • 根据需要进行其他自定义配置。您可以参考Elasticsearch官方文档中的日志配置部分,了解更多配置选项。

  3. 保存并重新启动Elasticsearch:
    保存对log4j2.properties文件的修改,并重新启动Elasticsearch以使更改生效。

    • 在Windows上,您可以在命令提示符(CMD)或Powershell中运行以下命令来停止和启动Elasticsearch:

      # 停止Elasticsearch
      bin\elasticsearch.bat stop
      
      # 启动Elasticsearch
      bin\elasticsearch.bat start
      
    • 在类Unix系统(如Linux和macOS)上,您可以在终端中运行以下命令来停止和启动Elasticsearch:

      # 停止Elasticsearch
      bin/elasticsearch stop
      
      # 启动Elasticsearch
      bin/elasticsearch start
      

    确保在重新启动之前保存了所有重要的数据和配置文件。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
SQL Java 数据库连接
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录—— application.yml 中对日志的配置
在 Spring Boot 项目中,`application.yml` 文件用于配置日志。通过 `logging.config` 指定日志配置文件(如 `logback.xml`),实现日志详细设置。`logging.level` 可定义包的日志输出级别,例如将 `com.itcodai.course03.dao` 包设为 `trace` 级别,便于开发时查看 SQL 操作。日志级别从高到低为 ERROR、WARN、INFO、DEBUG,生产环境建议调整为较高级别以减少日志量。本课程采用 yml 格式,因其层次清晰,但需注意格式要求。
224 0
|
2月前
|
存储 监控 API
【Azure App Service】分享使用Python Code获取App Service的服务器日志记录管理配置信息
本文介绍了如何通过Python代码获取App Service中“Web服务器日志记录”的配置状态。借助`azure-mgmt-web` SDK,可通过初始化`WebSiteManagementClient`对象、调用`get_configuration`方法来查看`http_logging_enabled`的值,从而判断日志记录是否启用及存储方式(关闭、存储或文件系统)。示例代码详细展示了实现步骤,并附有执行结果与官方文档参考链接,帮助开发者快速定位和解决问题。
117 23
|
7月前
|
存储 缓存 固态存储
优化Elasticsearch 硬件配置
优化Elasticsearch 硬件配置
327 5
|
3月前
|
监控 Shell Linux
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。
|
3月前
|
数据库连接 测试技术 Windows
【YashanDB知识库】windows配置ODBC跟踪日志, 使用日志定位问题
【YashanDB知识库】windows配置ODBC跟踪日志, 使用日志定位问题
|
5月前
|
存储 运维 监控
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
|
4月前
|
存储 弹性计算 运维
海量日志接入 Elasticsearch Serverless 应用降本70%以上
本文将探讨在日志场景下,使用阿里云Elasticsearch Serverless相较于基于ECS自建Elasticsearch集群的成本与性能优势,展示如何通过Serverless架构实现高达 70%以上的成本节约。
344 0
|
6月前
|
SQL
南大通用GBase 8a配置gcware日志等级,减少日志输出,节省磁盘IO
南大通用GBase 8a配置gcware日志等级,减少日志输出,节省磁盘IO
|
6月前
|
存储 Prometheus 监控
Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行
本文深入探讨了在Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行。
264 5
|
7月前
|
缓存 监控 安全
优化Elasticsearch 集群配置
优化Elasticsearch 集群配置
208 4