Java性能调优

简介:

JVM调优(最关键参数为:-Xms -Xmx -Xmn -XX:SurvivorRatio -XX:MaxTenuringThreshold)

 

代大小调优:

避免新生代大小设置过小、避免新生代大小设置过大、避免Survivor设置过小或过大、合理设置新生代存活周期。

-Xmn 调整新生代大小,新生代越大通常也意味着更多对象会在minor GC阶段被回收,但可能有可能造成旧生代大小,造成频繁触发Full GC,甚至是OutOfMemoryError。

-XX:SurvivorRatio调整Eden区与Survivor区的大小,Eden 区越大通常也意味着minor GC发生频率越低,但可能有可能造成Survivor区太小,导致对象minor GC后就直接进入旧生代,从而更频繁触发Full GC。

 

GC策略的调优:CMS GC多数动作是和应用并发进行的,确实可以减小GC动作给应用造成的暂停时间。对于Web应用非常需要一个对应用造成暂停时间短的GC,再加上Web应用 的瓶颈都不在CPU上,在G1还不够成熟的情况下,CMS GC是不错的选择。

(如果系统不是CPU密集型,且从新生代进入旧生代的大部分对象是可以回收的,那么采用CMS GC可以更好地在旧生代满之前完成对象的回收,更大程度降低Full GC发生的可能)

 

在调整了内存管理方面的参数后应通过-XX:PrintGCDetails、-XX:+PrintGCTimeStamps、 -XX:+PrintGCApplicationStoppedTime以及jstat或visualvm等方式观察调整后的GC状况。

出内存管理以外的其他方面的调优参数:-XX:CompileThreshold、-XX:+UseFastAccessorMethods、 -XX:+UseBaiasedLocking。

 

 

 

程序调优 

CPU消耗严重的解决方法

CPU us高的解决方法:

CPU us 高的原因主要是执行线程不需要任何挂起动作,且一直执行,导致CPU 没有机会去调度执行其他的线程。

调优方案: 增加Thread.sleep,以释放CPU 的执行权,降低CPU 的消耗。以损失单次执行性能为代价的,但由于其降低了CPU 的消耗,对于多线程的应用而言,反而提高了总体的平均性能。

(在实际的Java应用中类似场景, 对于这种场景最佳方式是改为采用wait/notify机制)

对于其他类似循环次数过多、正则、计算等造成CPU us过高的状况, 则需要结合业务调优。

对于GC频繁,则需要通过JVM调优或程序调优,降低GC的执行次数。

CPU sy高的解决方法:

CPU sy 高的原因主要是线程的运行状态要经常切换,对于这种情况,常见的一种优化方法是减少线程数。

调优方案: 将线程数降低

这种调优过后有可能会造成CPU us过高,所以合理设置线程数非常关键。

 

对于Java分布式应用,还有一种典型现象是应用中有较多的网络IO操作和确实需要一些锁竞争机制(如数据库连接池),但为了能够支撑搞得并发量,可采用协程(Coroutine)来支撑更高的并发量,避免并发量上涨后造成CPU sy消耗严重、系统load迅速上涨和系统性能下降。

在Java中实现协程的框架有Kilim,Kilim执行一项任务创建Task,使用Task的暂停机制,而不是Thread,Kilim承担了线程调度以及上下切换动作,Task相对于原生Thread而言就轻量级多了,且能更好利用CPU。Kilim带来的是线程使用率的提升,但同时由于要在JVM堆中保存Task上下文信息,因此在采用Kilim的情况下要消耗更多的内存。(目前JDK 7中也有一个支持协程方式的实现,另外基于JVM的Scala的Actor也可用于在Java使用协程)

 

文件IO消耗严重的解决方法

从程序的角度而言,造成文件IO消耗严重的原因主要是多个线程在写进行大量的数据到同一文件,导致文件很快变得很大,从而写入速度越来越慢,并造成各线程激烈争抢文件锁。

常用调优方法:

异步写文件

批量读写

限流

限制文件大小

 

内存消耗严重的解决方法

释放不必要的引用:代码持有了不需要的对象引用,造成这些对象无法被GC,从而占据了JVM堆内存。(使用ThreadLocal:注意在线程内动作执行完毕时,需执行ThreadLocal.set把对象清除,避免持有不必要的对象引用)

使用对象缓存池:创建对象要消耗一定的CPU以及内存,使用对象缓存池一定程度上可降低JVM堆内存的使用。

采用合理的缓存失效算法:如果放入太多对象在缓存池中,反而会造成内存的严重消耗, 同时由于缓存池一直对这些对象持有引用,从而造成Full GC增多,对于这种状况要合理控制缓存池的大小,避免缓存池的对象数量无限上涨。(经典的缓存失效算法来清除缓存池中的对象:FIFO、LRU、LFU等)

合理使用SoftReference和WeekReference:SoftReference的对象会在内存不够用的时候回收,WeekReference的对象会在Full GC的时候回收。

资源消耗不多但程序执行慢的情况的解决方法

降低锁竞争: 多线多了,锁竞争的状况会比较明显,这时候线程很容易处于等待锁的状况,从而导致性能下降以及CPU sy上升。

使用并发包中的类:大多数采用了lock-free、nonblocking算法。

使用Treiber算法:基于CAS以及AtomicReference。

使用Michael-Scott非阻塞队列算法:基于CAS以及AtomicReference,典型ConcurrentLindkedQueue。

(基于CAS和AtomicReference来实现无阻塞是不错的选择,但值得注意的是,lock-free算法需不断的循环比较来保证资源的一致性的,对于冲突较多的应用场景而言,会带来更高的CPU消耗,因此不一定采用CAS实现无阻塞的就一定比采用lock方式的性能好。 还有一些无阻塞算法的改进:MCAS、WSTM等)

尽可能少用锁:尽可能只对需要控制的资源做加锁操作(通常没有必要对整个方法加锁,尽可能让锁最小化,只对互斥及原子操作的地方加锁,加锁时尽可能以保护资源的最小化粒度为单位--如只对需要保护的资源加锁而不是this)。

拆分锁:独占锁拆分为多把锁(读写锁拆分、类似ConcurrentHashMap中默认拆分为16把锁),很多程度上能提高读写的性能,但需要注意在采用拆分锁后,全局性质的操作会变得比较复杂(如ConcurrentHashMap中size操作)。(拆分锁太多也会造成副作用,如CPU消耗明显增加)

去除读写操作的互斥:在修改时加锁,并复制对象进行修改,修改完毕后切换对象的引用,从而读取时则不加锁。这种称为CopyOnWrite,CopyOnWriteArrayList是典型实现,好处是可以明显提升读的性能,适合读多写少的场景, 但由于写操作每次都要复制一份对象,会消耗更多的内存。



本文转自 sykmiao 51CTO博客,原文链接:http://blog.51cto.com/syklinux/1942316,如需转载请自行联系原作者

相关文章
|
2月前
|
Java 测试技术 API
Java Stream API:被低估的性能陷阱与优化技巧
Java Stream API:被低估的性能陷阱与优化技巧
367 114
|
4月前
|
机器学习/深度学习 Java 编译器
解锁硬件潜能:Java向量化计算,性能飙升W倍!
编译优化中的机器相关优化主要包括指令选择、寄存器分配、窥孔优化等,发生在编译后端,需考虑目标平台的指令集、寄存器、SIMD支持等硬件特性。向量化计算利用SIMD技术,实现数据级并行,大幅提升性能,尤其适用于图像处理、机器学习等领域。Java通过自动向量化和显式向量API(JDK 22标准)支持该技术。
227 4
|
4月前
|
Cloud Native 前端开发 Java
WebAssembly 与 Java 结合的跨语言协作方案及性能提升策略研究
本文深入探讨了WebAssembly与Java的结合方式,介绍了编译Java为Wasm模块、在Java中运行Wasm、云原生集成等技术方案,并通过金融分析系统的应用实例展示了其高性能、低延迟、跨平台等优势。结合TeaVM、JWebAssembly、GraalVM、Wasmer Java等工具,帮助开发者提升应用性能与开发效率,适用于Web前端、服务器端及边缘计算等场景。
188 0
|
7月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
存储 缓存 Java
Java 12相比Java 11有哪些性能上的提升?
Java 12相比Java 11有哪些性能上的提升?
90 3
|
2月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
154 8
|
3月前
|
Java Spring
如何优化Java异步任务的性能?
本文介绍了Java中四种异步任务实现方式:基础Thread、线程池、CompletableFuture及虚拟线程。涵盖多场景代码示例,展示从简单异步到复杂流程编排的演进,适用于不同版本与业务需求,助你掌握高效并发编程实践。(239字)
256 6
|
3月前
|
缓存 Java 开发者
Java 开发者必看!ArrayList 和 LinkedList 的性能厮杀:选错一次,代码慢成蜗牛
本文深入解析了 Java 中 ArrayList 和 LinkedList 的性能差异,揭示了它们在不同操作下的表现。通过对比随机访问、插入、删除等操作的效率,指出 ArrayList 在多数场景下更高效,而 LinkedList 仅在特定情况下表现优异。文章强调选择合适容器对程序性能的重要性,并提供了实用的选择法则。
238 3
|
6月前
|
存储 Java 大数据
Java代码优化:for、foreach、stream使用法则与性能比较
总结起来,for、foreach和stream各自都有其适用性和优势,在面对不同的情况时,有意识的选择更合适的工具,能帮助我们更好的解决问题。记住,没有哪个方法在所有情况下都是最优的,关键在于理解它们各自的特性和适用场景。
609 23
|
XML Java 数据库连接
性能提升秘籍:如何高效使用Java连接池管理数据库连接
在Java应用中,数据库连接管理至关重要。随着访问量增加,频繁创建和关闭连接会影响性能。为此,Java连接池技术应运而生,如HikariCP。本文通过代码示例介绍如何引入HikariCP依赖、配置连接池参数及使用连接池高效管理数据库连接,提升系统性能。
238 5