Java性能调优

简介:

JVM调优(最关键参数为:-Xms -Xmx -Xmn -XX:SurvivorRatio -XX:MaxTenuringThreshold)

 

代大小调优:

避免新生代大小设置过小、避免新生代大小设置过大、避免Survivor设置过小或过大、合理设置新生代存活周期。

-Xmn 调整新生代大小,新生代越大通常也意味着更多对象会在minor GC阶段被回收,但可能有可能造成旧生代大小,造成频繁触发Full GC,甚至是OutOfMemoryError。

-XX:SurvivorRatio调整Eden区与Survivor区的大小,Eden 区越大通常也意味着minor GC发生频率越低,但可能有可能造成Survivor区太小,导致对象minor GC后就直接进入旧生代,从而更频繁触发Full GC。

 

GC策略的调优:CMS GC多数动作是和应用并发进行的,确实可以减小GC动作给应用造成的暂停时间。对于Web应用非常需要一个对应用造成暂停时间短的GC,再加上Web应用 的瓶颈都不在CPU上,在G1还不够成熟的情况下,CMS GC是不错的选择。

(如果系统不是CPU密集型,且从新生代进入旧生代的大部分对象是可以回收的,那么采用CMS GC可以更好地在旧生代满之前完成对象的回收,更大程度降低Full GC发生的可能)

 

在调整了内存管理方面的参数后应通过-XX:PrintGCDetails、-XX:+PrintGCTimeStamps、 -XX:+PrintGCApplicationStoppedTime以及jstat或visualvm等方式观察调整后的GC状况。

出内存管理以外的其他方面的调优参数:-XX:CompileThreshold、-XX:+UseFastAccessorMethods、 -XX:+UseBaiasedLocking。

 

 

 

程序调优 

CPU消耗严重的解决方法

CPU us高的解决方法:

CPU us 高的原因主要是执行线程不需要任何挂起动作,且一直执行,导致CPU 没有机会去调度执行其他的线程。

调优方案: 增加Thread.sleep,以释放CPU 的执行权,降低CPU 的消耗。以损失单次执行性能为代价的,但由于其降低了CPU 的消耗,对于多线程的应用而言,反而提高了总体的平均性能。

(在实际的Java应用中类似场景, 对于这种场景最佳方式是改为采用wait/notify机制)

对于其他类似循环次数过多、正则、计算等造成CPU us过高的状况, 则需要结合业务调优。

对于GC频繁,则需要通过JVM调优或程序调优,降低GC的执行次数。

CPU sy高的解决方法:

CPU sy 高的原因主要是线程的运行状态要经常切换,对于这种情况,常见的一种优化方法是减少线程数。

调优方案: 将线程数降低

这种调优过后有可能会造成CPU us过高,所以合理设置线程数非常关键。

 

对于Java分布式应用,还有一种典型现象是应用中有较多的网络IO操作和确实需要一些锁竞争机制(如数据库连接池),但为了能够支撑搞得并发量,可采用协程(Coroutine)来支撑更高的并发量,避免并发量上涨后造成CPU sy消耗严重、系统load迅速上涨和系统性能下降。

在Java中实现协程的框架有Kilim,Kilim执行一项任务创建Task,使用Task的暂停机制,而不是Thread,Kilim承担了线程调度以及上下切换动作,Task相对于原生Thread而言就轻量级多了,且能更好利用CPU。Kilim带来的是线程使用率的提升,但同时由于要在JVM堆中保存Task上下文信息,因此在采用Kilim的情况下要消耗更多的内存。(目前JDK 7中也有一个支持协程方式的实现,另外基于JVM的Scala的Actor也可用于在Java使用协程)

 

文件IO消耗严重的解决方法

从程序的角度而言,造成文件IO消耗严重的原因主要是多个线程在写进行大量的数据到同一文件,导致文件很快变得很大,从而写入速度越来越慢,并造成各线程激烈争抢文件锁。

常用调优方法:

异步写文件

批量读写

限流

限制文件大小

 

内存消耗严重的解决方法

释放不必要的引用:代码持有了不需要的对象引用,造成这些对象无法被GC,从而占据了JVM堆内存。(使用ThreadLocal:注意在线程内动作执行完毕时,需执行ThreadLocal.set把对象清除,避免持有不必要的对象引用)

使用对象缓存池:创建对象要消耗一定的CPU以及内存,使用对象缓存池一定程度上可降低JVM堆内存的使用。

采用合理的缓存失效算法:如果放入太多对象在缓存池中,反而会造成内存的严重消耗, 同时由于缓存池一直对这些对象持有引用,从而造成Full GC增多,对于这种状况要合理控制缓存池的大小,避免缓存池的对象数量无限上涨。(经典的缓存失效算法来清除缓存池中的对象:FIFO、LRU、LFU等)

合理使用SoftReference和WeekReference:SoftReference的对象会在内存不够用的时候回收,WeekReference的对象会在Full GC的时候回收。

资源消耗不多但程序执行慢的情况的解决方法

降低锁竞争: 多线多了,锁竞争的状况会比较明显,这时候线程很容易处于等待锁的状况,从而导致性能下降以及CPU sy上升。

使用并发包中的类:大多数采用了lock-free、nonblocking算法。

使用Treiber算法:基于CAS以及AtomicReference。

使用Michael-Scott非阻塞队列算法:基于CAS以及AtomicReference,典型ConcurrentLindkedQueue。

(基于CAS和AtomicReference来实现无阻塞是不错的选择,但值得注意的是,lock-free算法需不断的循环比较来保证资源的一致性的,对于冲突较多的应用场景而言,会带来更高的CPU消耗,因此不一定采用CAS实现无阻塞的就一定比采用lock方式的性能好。 还有一些无阻塞算法的改进:MCAS、WSTM等)

尽可能少用锁:尽可能只对需要控制的资源做加锁操作(通常没有必要对整个方法加锁,尽可能让锁最小化,只对互斥及原子操作的地方加锁,加锁时尽可能以保护资源的最小化粒度为单位--如只对需要保护的资源加锁而不是this)。

拆分锁:独占锁拆分为多把锁(读写锁拆分、类似ConcurrentHashMap中默认拆分为16把锁),很多程度上能提高读写的性能,但需要注意在采用拆分锁后,全局性质的操作会变得比较复杂(如ConcurrentHashMap中size操作)。(拆分锁太多也会造成副作用,如CPU消耗明显增加)

去除读写操作的互斥:在修改时加锁,并复制对象进行修改,修改完毕后切换对象的引用,从而读取时则不加锁。这种称为CopyOnWrite,CopyOnWriteArrayList是典型实现,好处是可以明显提升读的性能,适合读多写少的场景, 但由于写操作每次都要复制一份对象,会消耗更多的内存。



本文转自 sykmiao 51CTO博客,原文链接:http://blog.51cto.com/syklinux/1942316,如需转载请自行联系原作者

相关文章
|
3月前
|
缓存 算法 Java
Java 实现的局域网管控软件的性能调优
局域网管控软件在企业网络管理中至关重要,但随着网络规模扩大和功能需求增加,其性能可能受影响。文章分析了数据处理效率低下、网络通信延迟和资源占用过高等性能瓶颈,并提出了使用缓存、优化算法、NIO库及合理管理线程池等调优措施,最终通过性能测试验证了优化效果,显著提升了软件性能。
49 1
|
2月前
|
XML Java 数据库连接
性能提升秘籍:如何高效使用Java连接池管理数据库连接
在Java应用中,数据库连接管理至关重要。随着访问量增加,频繁创建和关闭连接会影响性能。为此,Java连接池技术应运而生,如HikariCP。本文通过代码示例介绍如何引入HikariCP依赖、配置连接池参数及使用连接池高效管理数据库连接,提升系统性能。
75 5
|
3月前
|
算法 Java 测试技术
java性能调优涉及哪些方面
本文详细探讨了性能调优的各个方面,包括Java编程、多线程、JVM监控、设计模式和数据库调优。文章还介绍了性能调优的标准制定、介入时机、系统性能的影响因素,以及如何衡量和判断系统的性能与负载承受能力。最后,提出了性能调优的具体策略,包括代码、设计、算法优化及参数调整,并讨论了限流、智能化扩容等兜底策略。
java性能调优涉及哪些方面
|
1月前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
2月前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
47 1
|
2月前
|
监控 Java 开发者
Java线程池调优指南###
本文深入探讨了Java线程池的工作原理与调优策略,旨在帮助开发者理解线程池的核心参数及其对应用性能的影响。通过实例分析,揭示如何根据具体业务场景合理配置线程池,以实现资源高效利用和系统稳定性的平衡。 ###
|
2月前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
62 6
|
2月前
|
监控 Java 编译器
Java虚拟机调优实战指南####
本文深入探讨了Java虚拟机(JVM)的调优策略,旨在帮助开发者和系统管理员通过具体、实用的技巧提升Java应用的性能与稳定性。不同于传统摘要的概括性描述,本文摘要将直接列出五大核心调优要点,为读者提供快速预览: 1. **初始堆内存设置**:合理配置-Xms和-Xmx参数,避免频繁的内存分配与回收。 2. **垃圾收集器选择**:根据应用特性选择合适的GC策略,如G1 GC、ZGC等。 3. **线程优化**:调整线程栈大小及并发线程数,平衡资源利用率与响应速度。 4. **JIT编译器优化**:利用-XX:CompileThreshold等参数优化即时编译性能。 5. **监控与诊断工
|
2月前
|
监控 前端开发 Java
Java SpringBoot –性能分析与调优
Java SpringBoot –性能分析与调优
|
2月前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
40 4