自然语言处理中的注意力机制是干什么的?-阿里云开发者社区

开发者社区> 量子位> 正文
登录阅读全文

自然语言处理中的注意力机制是干什么的?

简介:
本文来自AI新媒体量子位(QbitAI)

谈神经网络中注意力机制的论文和博客都不少,但很多人还是不知道从哪看起。于是,在国外问答网站Quora上就有了这个问题:如何在自然语言处理中引入注意力机制?

Quora自家负责NLP和ML的技术主管Nikhil Dandekar做出了一个简要的回答:

概括地说,在神经网络实现预测任务时,引入注意力机制能使训练重点集中在输入数据的相关部分,忽略无关部分。

注意力是指人的心理活动指向和集中于某种事物的能力。比如说,你将很长的一句话人工从一种语言翻译到另一种语言,在任何时候,你最关注的都是当时正在翻译的词或短语,与它在句子中的位置无关。在神经网络中引入注意力机制,就让它也学会了人类这种做法。

注意力机制最经常被用于序列转换(Seq-to-Seq)模型中。如果不引入注意力机制,模型只能以单个隐藏状态单元,如下图中的S,去捕获整个输入序列的本质信息。这种方法在实际应用中效果很差,而且输入序列越长,这个问题就越糟糕。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

图1:仅用单个S单元连接的序列转换模型

注意力机制在解码器(Decoder)运行的每个阶段中,通过回顾输入序列,来增强该模型效果。解码器的输出不仅取决于解码器最终的状态单元,还取决于所有输入状态的加权组合。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

图2:引入注意力机制的序列转换模型

注意力机制的引入增加了网络结构的复杂性,其作为标准训练模型时的一部分,通过反向传播进行学习。这在网络中添加模块就能实现,不需要定义函数等操作。

下图的例子,是将英语翻译成法语。在输出翻译的过程中,你可以看到该网络“注意”到输入序列的不同部分。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

图3:翻译网络示意图

由于英语和法语语序比较一致,从网络示意图可以看出,除了在把短语“European Economic Zone(欧洲经济区)”翻译成法语“zone économique européenne”时,网络线有部分交叉,在大多数时,解码器都是按照顺序来“注意”单词的。

文中配图来自Distill

推荐阅读:

Attention and Augmented Recurrent Neural Networks
http://distill.pub/2016/augmented-rnns/

Attention and Memory in Deep Learning and NLP
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/

Peeking into the neural network architecture used for Google’s Neural Machine Translation
https://smerity.com/articles/2016/google_nmt_arch.html

【完】

本文作者:王小新
原文发布时间:2017-05-12

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
+ 订阅

官方博客
最新文章
相关文章
官网链接