开发者社区> 朗锐智科1> 正文

人工智能+医疗 一个让人期待的人工智能时代正在快速到来

简介:
+关注继续查看

2017两会中人工智能第一次出现在政府工作报告中,关注人工智能的科技界因此热血沸腾。世界癌症日2月4日当天,IBM Watson医生第一次在中国“出诊”,仅用10秒就开出了癌症处方。这两条消息再次把人工智能推向了高潮. 不管医生是不是接受,人工智能(AI) 已经强势闯入医疗界,让我们一起回顾一下,人工智能战胜人类的那些事件。

健康一体机

1.Science报道自学习式人工智能可协助预测心脏病发作

Science杂志报道了英国诺丁汉大学流行病学家StephenWeng博士团队发表在PLOSONE上的重要研究成果,Weng博士团队将机器学习算法应用于电子病历的常规数据分析,发现与当前的心脏病预测方法相比,深度学习算法不仅可以更准确地预测心脏病发病风险,还可以降低假阳性患者数量。

在这项新研究中,Weng和其同事对比了ACC/AHA 指导方针和4个机器学习算法:随机森林(random forest)、logistic 回归(logistic regression)、梯度提升(gradient boosting)以及神经网络(neural networks)。为了在没有人类指示的情况下得出预测工具,所有这 4 项技术分析了大量数据,被分析的数据来自英国378256名患者的电子医疗记录,目标是在与心血管疾病有关的记录之中找出发病模式。

2.人工智能诊断皮肤癌准确率达91%

斯坦福大学一个联合研究团队开发出了一个皮肤癌诊断准确率媲美人类医生的人工智能,相关成果刊发为了1月底《自然》杂志的封面论文,题为《达到皮肤科医生水平的皮肤癌筛查深度神经网络》(Dermatologist-levelclassification of skin cancer with deep neuralnetworks)。他们通过深度学习的方法,用近13万张痣、皮疹和其他皮肤病变的图像训练机器识别其中的皮肤癌症状,在与21位皮肤科医生的诊断结果进行对比后,他们发现这个深度神经网络的诊断准确率与人类医生不相上下,在91%以上。

在测试中,人工智能被要求完成三项诊断任务:鉴别角化细胞癌、鉴别黑色素瘤,以及使用皮肤镜图像对黑色素瘤进行分类。研究者通过建构敏感性(sensitivity)-特异性(specificity)曲线对算法的表现进行衡量。敏感性体现了算法正确识别恶性病变的能力,特异性体现了算法正确识别良性病变,即不误诊为癌症的能力。在所有三项任务中,该人工智能表现与人类皮肤科医生不相上下,敏感性达到91%。

3.人工智能走进ICU:可预测病人死亡准确率达93%

在洛杉矶儿童医院,数据科学家Melissa Aczon和David Ledbetter提出了一种人工智能系统,这个系统可以让医生们更好地了解哪些孩子的病情可能会恶化。

他们使用了PICU里超过12000名患者的健康记录,机器学习程序在数据中发现了相关规律,成功识别出了即将死亡的患者。该程序预测死亡的准确率达到了93%,明显比目前在医院PICU中使用的简单评级系统表现更好。Aczon和Ledbetter在Arxiv上发表了相关论文,公布了他们的研究成果。

他们实验的创新点是使用了一种叫做循环神经网络(RNN)的机器学习方法,这种方法擅长处理持续的数据序列,而不是从某一个时刻的数据点直接得出结论。“RNN网络是处理临床数据序列的一种有效方法。”Aczon说,“它能够整合新产生的信息序列,得到准确的输出。”所以在程序中,RNN网络表现得更好,因为它能够随着时间的推移,根据病人最近12小时的临床数据,做出最准确的预测。

4.第三军医大利用人工智能30秒内鉴定血型,超99.9%准确率

3月15日,权威杂志science刊登的一篇关于中国第三军医大学罗阳团队的最新研究成果,这对于急需输血抢救的病人意义重大,可以为患者节省3-15分钟的时间,增加他们的生还几率,同时也可用于抢险救灾、战场急救等急需验血的情况。

第三军军医大学罗阳团队研发的技术,可以在30秒内检测出ABO血型和Rh血型,仅用一滴血在2分钟内完成包括罕见血型在内的正向和反向同时定型(医生在输血前,为了减少错误,一般要做正反定型和交叉验血试验)。同时团队还设计出一套智能算法,能够根据试纸的颜色变化读出血型,定型准确率超过99.9%。

研发团队为了减少人为识别带来的误差,开发了一套机器学习算法自动识别颜色的变化,同时为了验证算法的准确性,研究人员先用经典凝胶卡片法鉴定3550例血液样本,再通过优化参数操作,算法模型准确的测出这3550例血液的血型。

5.谷歌研发人工智能眼科医生:用深度学习诊断预防失明

表于JAMA 的论文《用于检测视网膜眼底照片中糖尿病性视网膜病变的深度学习算法的开发和验证(Developmentand Validation of a Deep Learning Algorithm for Detectionof DiabeticRetinopathy in Retinal Fundus Photographs)》中,我们提出了一种可以解读视网膜照片中 DR 发病迹象的深度学习算法,这有望能帮助资源有限地区的医生正确地筛选出更多的病人。

研究人员创建了一个包含128000 张图像的开发数据集,其中每一张图像都得到了54位眼科医生中3到7位医生的评估。这个数据集被用来训练了一个可以检测可诱发糖尿病性视网膜病变的病症的深度神经网络。然后两个互相独立的包含大约 12000 张图像的临床验证集上测试了该算法的表现,该测试所参考的标准是一个7或8人的美国认证眼科医生中大多数人的意见。为验证集所选择的眼科医生的意见与训练集原来的54位医生的意见表现出了高度的一致性。

在这项成人的糖尿病性视网膜眼底照片的评估中,基于深机器学习的算法对可疑糖尿病性视网膜病变检测时具有高灵敏度和特异性。进一步的研究是必要的,这将确认此算法应用在临床中的可行性,并确定与目前的眼科评估相比是否使用该算法可以改善治疗和诊断结果。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
情感AI:为什么它是数字医疗的未来?
什么是情感AI?情感AI,是计算机科学的一个领域,帮助机器理解人类的情感。
76 0
AI医疗高精尖!基于AI的新药研发!⛵
『人工智能+新药研发』已经成为国内外医药企业的发展新模式!本文讲解 AI 在新药研发领域的诸多应用方向与 MolSearch 工具库的应用实践——药物晶型预测、靶点选择、患者招募、虚拟药物筛选、AI新药研发辅助系统。
717 0
人工智能能拯救医疗行业吗?
人工智能凭借其开创性的创新,迅速打乱了医疗、零售、制造和旅游等众多行业。在过去几年里,医疗保健行业在改进治疗、疾病分析和患者满意度方面已经看到了许多创新。
33 0
医疗健康行业如何应对人工智能与数字技术的挑战
近年来,科技行业的各个领域都取得了巨大进步,包括人工智能、语音识别、云计算和移动计算、物联网(IoT)和可穿戴设备。许多领域都利用了这些趋势,改进了它们为客户提供的服务和应用程序。
58 0
人工智能进入医疗领域的机会和挑战
自从人工智能(AI)概念大热之后,其进入各个产业领域的速度加快。不过,鉴于医疗领域的复杂性,AI在医疗产业的拓展并不顺利,唯一获得规模化的正向增长的是手术机器人,其他在经历了多年的发展,整个领域仍属于不成熟的早期市场,难以真正商业化。
33 0
2022年人工智能在医疗领域的十大应用场景
医疗人工智能是指人工智能在医疗服务和医疗服务管理或交付中的应用。机器学习、非结构化的大型数据集、高级传感器、自然语言处理和机器人技术都被用于越来越多的医疗部门中。
94 0
医疗领域的十大人工智能应用场景
除了广阔的应用前景,人工智能技术也带来了重大的潜在问题——例如可能来自患者数据的集中化和数字化的滥用,以及可能与纳米医学或通用生物识别ID的联系。
125 0
AI+医疗:使用神经网络进行医学影像识别分析 ⛵
U-Net是一种卷积网络架构,用于快速、精确地分割生物医学图像。本文讲解使用 U-Net 进行肺部影像分割的案例全过程:工具库&环境准备、数据读取、数据切分、TensorFlow IO准备、U-Net 网络构建、评估准则&损失函数、超参数设置&模型编译、回调函数&模型训练、模型加载&新数据预估。【代码与数据集亲测可运行】
4590 0
医疗 AI 未来值得关注的三个趋势
无代码工具和日益增长的文本实用性表明,随着 AI 复杂性地不断提高,安全问题依然存在。
55 0
达摩院医疗AI团队获评全国科技抗疫先进集体
日前,科技部公开表彰全国科技系统抗击新冠肺炎疫情先进集体和先进个人,阿里巴巴达摩院医疗AI团队获评先进集体,达摩院算法专家许敏丰获评先进个人。许敏丰和他所在的达摩院医疗AI团队开发出CT影像新冠肺炎AI辅助诊断系统,应用于国内600多家医院,分析病例超过80万,大幅提升诊疗效率,减轻医生负担。
553 0
+关注
朗锐智科1
嵌入式系统开发,物联网技术研发 http://www.lrist.com
文章
问答
文章排行榜
最热
最新
相关电子书
更多
视觉AI能力的开放现状及ModelScope实战
立即下载
通用多模态AI构建
立即下载
阿里云AI产品必知必会系列电子书
立即下载