阿里巴巴测试环境稳定性提升实践

简介: 测试环境是研发/测试同学最常用的功能,稳定性直接影响到研发效率,那如何提升测试环境的稳定性?阿里巴巴应用与基础运维平台高级开发工程师张劲,通过阿里内部实践,总结了一套测试环境稳定性提升方法,供大家参考。
974713679d5fc7d1263f5038169b3d6461fec5e4
扫码或点我直达 免费领 

导读:测试环境是研发/测试同学最常用的功能,稳定性直接影响到研发效率,那如何提升测试环境的稳定性?阿里巴巴应用与基础运维平台高级开发工程师张劲,通过阿里内部实践,总结了一套测试环境稳定性提升方法,供大家参考。

痛点

每一次容器申请失败直接造成研发测试停滞, 同时带来答疑及问题排查(程序猿最怕的就是在代码写得正嗨的时候被人给打断,所以一般我都带耳机),涉及到测试链路上各个系统。随着集团pouch化的全面推进,半年来测试环境日容器申请量暴增10倍以上,低成功率导致研发低效的问题越来越凸显,每天累计造成集团上百小时的研发测试停滞,损失不可接受,也渐渐成为了pouch化推进过程中的一个阻力。

因此, 测试环境稳定性亟待大幅提升。

如何提升,经过答疑汇总和错误分析,主要集中在两个方面:

已成功申请的资源不可用
  • 测试环境宿主机较差(过保机器),且虚拟比高,容易发生故障。
  • 宿主机故障时,其上的容器不会被自动迁移,很可能导致再次部署重启时失败。
  • 调度系统巡检会将故障宿主机置为不可调度,由于其上仍有容器,不能下线修复后重用, 造成机器资源越来越少。
新申请资源时成功率低
  • 测试环境机器被分为优先级不同的资源池,资源池间机器资源不共享。
  • 测试环境机器的容量/余量不透明,没有告警,造成因资源不足的调度失败。
  • 因为测试环境与线上环境有很大不同,资源调度系统之前没有针对测试场景优化, 成功率不高。

目标

容器申请成功率:99.9%

方案

e76d30e81a2979f5ca63b086eb0b433ddd37a873

指标数据

从一开始我们就觉的数据非常重要,没有相关的稳定性数据,那我们就无的放矢,根据数据我们就能找到需要优化的点以及持续优化的动力。所以项目开始阶段就做了挺长时间的数据收集工作。

  • 测试环境链路数据收集:从上至下包括Normandy(基础应用运维平台),黄蜂(资源申请平台),Zeus(二层调度),Sigma(集团资源调度系统);其中我们最关心的就是最终容器交付的成功率,以及失败case。失败case可以帮助我们分析整个系统中到底哪些地方存在问题,成功率趋势则帮助我们检验新的修复优化是否真的有效且稳定,也是最终成果的衡量指标。、
  • 测试环境链路稳定性数据展示平台:其实上下游的每个系统都有自己的数据,但是没有整合,有的用阿里表哥,有的是发邮件,有的则没有展示出来,所以做这样一个小东西的目的就是将上下游系统的数据统一整合在一个页面上,更便于查看分析问题。
  • 每日/周/月错误分析:收集每天的错误数量及样例,便于分析问题。

已申请容器不可用

容器自动置换

容器自动置换是为了解决已申请的容器不可用问题,简单来说就是在另一台好的宿主机上扩一个新容器,然后将原来在故障宿主机上的旧容器下线。

整个流程如下:Sigma(资源调度系统)自动巡检出故障宿主机(比如磁盘满/硬件故障等),通知Atom(故障机替换)置换该故障宿主机上容器,Atom向Normandy(基础应用运维平台)发起机器置换流程。

通过自动置换将故障机腾空,然后下线修复。

新申请容器失败

合理化资源池分配

56fd916ea9532420e19fb0c78e01ca95d71914b7


d12e630f741cb70768e8924004c3944a42db2739

屏蔽底层系统失败

因为测试环境与线上环境差异很大,一般测试环境使用的机器都是线上淘汰机,同时为了节省预算,每台宿主机的虚拟比都很高,导致在创建和使用容器时都特别容易失败,所以有必要做一个容器buffer池屏蔽掉底层失败对用户的影响。

buffer池的整个逻辑非常简单清晰:在测试环境容器生产链路靠近用户的一端嵌入buffer池,预生产一批容器,在用户需要的时候分配给他。即使申请buffer容器失败,依然可以按原生产链路继续生产容器。每次从buffer池申请一个容器后,buffer池会自动异步补充一个相同规格的容器进来,以维持buffer池的容量。

如何确定buffer哪些规格的容器及池子的容量是另一个关键点:需要统计每种规格-镜像-资源池的历史申请量,按比例分配每种buffer的容量。同时为了保证即使在底层系统中断服务时,整个系统依然对用户可用,还需要确定高峰期的容器申请量,可允许中断时长以及测试环境机器资源, 用来确定整个buffer池子的容量。

还需要考虑的一点是,用户也分为普通用户(研发测试人员),系统用户(比如自动化测试系统等),他们的优先级也不同,需要优先保证普通用户可用。

同时为了最大程度的降低引入buffer池后可能对用户造成的影响,buffer池内加了许多动态开关,用于及时屏蔽某些功能。比如可针对具体应用设置是否需要修改容器主机名,此操作非常耗时,如果不改主机名,则平均不到1秒内会申请成功;如果某个应用不想使用buffer,也可立即屏蔽;如果buffer池本身出现问题,可以快速降级,在整个链路中去掉buffer功能。

另外buffer池在交付buffer容器前会额外做一次检查,判断容器是否可用,避免容器交付后,因为容器不可用而导致的服务部署失败,用户使用不了等问题。buffer池内部也会定期清理脏容器(不可用, 数据不一致等)和补充新的buffer容器。

总结

3244e08ec95162180ed6b4bccef4a122f6a74b10

上图展示测试环境最近2个月的容器申请成功率趋势,包括buffer池全量前后一个月。

从图中可以看到,11月末12月初的两天成功率极低,均是因为调度失败,之后根据资源池余量预测及报警及时调整了各个资源池的容量,提前消除了调度失败的可能,在此之后,成功率波幅都减少很多。

另一点,从buffer全量后,成功率波幅明显比buffer全量前大幅减小,波动次数明显减少,成功率趋于稳定。

buffer池全量后的一周内,由于buffer池内部的bug以及buffer命中率较低,成功率浮动较大,在bug修复以及提高buffer池命中率后,成功率基本稳定。

a9e50be306ae210b2e240dab17fd673e61512de0

上图展示近两个月的每日成功率趋势图,纵向对比了用户视角(有buffer)与底层系统视角(无buffer)。从图中可以看出,buffer池确实屏蔽了许多底层系统失败,除了其中一天buffer池被穿透导致成功率大跌。

展望

虽然经过一系列改造优化后,成功率有了明显的提升,但是依然有很多地方需要完善:

  • 资源池容量自动调配:目前算法简单,有些情况无法解决,比如大规模的新增或删除容器造成对余量趋势的误判。另外也要避免引入自动调配后造成宿主机标签的混乱。
  • buffer池模版动态的增减以及每种buffer的数量动态变化。当前buffer池一个难题就是如何覆盖到低频的应用镜像,这种镜像虽然低频但是容易申请失败,一旦这种容器大量申请,容易穿透buffer池,造成大量失败。
  • 扩大buffer池的容量,需要根据机器资源伸缩。

除了对以前工作的完善,测试环境依然有许多要做的事情:比如如何提高整个测试环境资源的利用率, 如何减少容器交付耗时(从用户申请到用户可用),如何推动应用的可调度化等等,希望能够和大家一起探讨。


嘉宾介绍

张劲(太云),阿里巴巴应用与基础运维平台-产品与架构部高级开发工程师,主要负责测试环境研发和效能提升,喜欢开源。

云效粉丝福利:

1.想要和作者一起共事吗?云效2.0-StarOps智能运维平台-致力于打造具备世界级影响力的智能运维平台,诚聘资深技术/产品专家  

工作地点:杭州、北京、美国







相关文章
|
10月前
|
数据采集 监控 机器人
浅谈网页端IM技术及相关测试方法实践(包括WebSocket性能测试)
最开始转转的客服系统体系如IM、工单以及机器人等都是使用第三方的产品。但第三方产品对于转转的业务,以及客服的效率等都产生了诸多限制,所以我们决定自研替换第三方系统。下面主要分享一下网页端IM技术及相关测试方法,我们先从了解IM系统和WebSocket开始。
248 4
|
12天前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
6天前
|
数据采集 存储 人工智能
从0到1:天猫AI测试用例生成的实践与突破
本文系统阐述了天猫技术团队在AI赋能测试领域的深度实践与探索,讲述了智能测试用例生成的落地路径。
从0到1:天猫AI测试用例生成的实践与突破
|
1月前
|
Java 测试技术 API
自动化测试工具集成及实践
自动化测试用例的覆盖度及关键点最佳实践、自动化测试工具、集成方法、自动化脚本编写等(兼容多语言(Java、Python、Go、C++、C#等)、多框架(Spring、React、Vue等))
91 6
|
1月前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
1月前
|
人工智能 自然语言处理 测试技术
AI测试平台的用例管理实践:写得清晰,管得高效,执行更智能
在测试过程中,用例分散、步骤模糊、回归测试效率低等问题常困扰团队。霍格沃兹测试开发学社推出的AI测试平台,打通“用例编写—集中管理—智能执行”全流程,提升测试效率与覆盖率。平台支持标准化用例编写、统一管理操作及智能执行,助力测试团队高效协作,释放更多精力优化测试策略。目前平台已开放内测,欢迎试用体验!
|
2月前
|
人工智能 资源调度 jenkins
精准化回归测试:大厂实践与技术落地解析
在高频迭代时代,全量回归测试成本高、效率低,常导致关键 bug 漏测。精准化测试通过代码变更影响分析,智能筛选高价值用例,显著提升测试效率与缺陷捕获率,实现降本增效。已被阿里、京东、腾讯等大厂成功落地,成为质量保障的新趋势。
|
2月前
|
搜索推荐 Devops 测试技术
避免无效回归!基于MCP协议的精准测试影响分析实践
本文揭示传统测试的"孤岛困境",提出MCP(Model Context Protocol)测试新范式,通过模型抽象业务、上下文感知环境和协议规范协作,实现从机械执行到智能测试的转变。剖析MCP如何颠覆测试流程,展示典型应用场景,并提供团队落地实践路径,助力测试工程师把握质量效率革命的新机遇。
|
2月前
|
人工智能 缓存 自然语言处理
大模型性能测试完全指南:从原理到实践
本文介绍了大模型性能测试的核心价值与方法,涵盖流式响应机制、PD分离架构、五大关键指标(如首Token延迟、吐字率等),并通过实战演示如何使用Locust进行压力测试。同时探讨了多模态测试的挑战与优化方向,帮助测试工程师成长为AI系统性能的“诊断专家”。
|
4月前
|
人工智能 Java 测试技术
SpringBoot 测试实践:单元测试与集成测试
在 Spring Boot 测试中,@MockBean 用于创建完全模拟的 Bean,替代真实对象行为;而 @SpyBean 则用于部分模拟,保留未指定方法的真实实现。两者结合 Mockito 可灵活控制依赖行为,提升测试覆盖率。合理使用 @ContextConfiguration 和避免滥用 @SpringBootTest 可优化测试上下文加载速度,提高测试效率。
289 6