- package lhz.algorithm.chapter.two;
- /**
- * 《合并排序》,利用分治思想进行排序。(针对习题2.3-2)
- * 《算法导论》原文摘要:
- * The merge sort algorithm closely follows the divide -and-conquer paradigm . Intuitively, it
- * operates as follows.
- * • Divide: Divide the n-element sequence to be sorted into two subsequences of n/2
- * elements each.
- * • Conquer: Sort the two subsequences recursively using merge sort.
- * • Combine: Merge the two sorted subsequences to produce the sorted answer.
- * The recursion "bottoms out" when the sequence to be sorted has length 1, in which case there
- * is no work to be done, since every sequence of length 1 is already in sorted order.
- * The key operation of the merge sort algorithm is the merging of two sorted sequences in the
- * "combine" step. To perform the merging, we use an auxiliary procedure MERGE( A, p, q, r ),
- * where A is an array and p, q, and r are indices numbering elements of the array such that p ≤ q < r . The procedure assumes that the subarrays A[p q] and A[q + 1 r ] are in sorted order.
- * It merges them to form a single sorted subarray that replaces the current subarray A[p r].
- *
- * Our MERGE procedure takes time Θ ( n), where n = r - p + 1 is the number of
- * elements being merged, and it works as follows. Returning to our card-playing
- * motif , suppose we have two piles of cards face up on a table. Each pile is
- * sorted, with the smallest cards on top. We wish to merge the two piles into a
- * single sorted output pile, which is to be face down on the table. Our basic
- * step consists of choosing the smaller of the two cards on top of the face-up
- * piles, removing it from its pile (which exposes a new top card), and placing
- * this card face down onto the output pile. We repeat this step until one input
- * pile is empty, at which time we just take the remaining input pile and place
- * it f ace down onto the output pile. Computationally, each basic step takes
- * constant time, since we are checking just two top cards. Since we perform at
- * most n basic steps, merging takes Θ( n) time.
- *
- * 伪代码:
- * MERGE(A, p, q, r)
- *1 n1 ← q - p + 1
- *2 n2 ← r - q
- *3 create arrays L[1 n1 + 1] and R[1 n2 + 1]
- *4 for i ← 1 to n1
- *5 do L[i] ← A[p + i - 1]
- *6 for j ← 1 to n2
- *7 do R[j] ← A[q + j]
- *8 L[n1 + 1] ← ∞ (∞代表到达最大值,哨兵位)
- *9 R[n2 + 1] ← ∞
- *10 i ← 1
- *11 j ← 1
- *12 for k ← p to r
- *13 do if L[i] ≤ R[j]
- *14 then A[k] ← L[i]
- *15 i ← i + 1
- *16 else A[k] ← R[j]
- *17 j ← j + 1
- *@author lihzh(苦逼coder)
- * 本文地址:http://mushiqianmeng.blog.51cto.com/3970029/730242
- */
- public class MergeSort {
- private static int[] input = new int[] { 2, 1, 5, 4, 9, 8, 6, 7, 10, 3 };
- /**
- * @param args
- */
- public static void main(String[] args) {
- mergeSort(input);
- //打印数组
- printArray();
- }
- /**
- * 针对习题2.3-2改写,与伪代码不对应
- * @param array
- * @return
- */
- private static int[] mergeSort(int[] array) {
- //如果数组的长度大于1,继续分解数组
- if (array.length > 1) {
- int leftLength = array.length / 2;
- int rightLength = array.length - leftLength;
- //创建两个新的数组
- int[] left = new int[leftLength];
- int[] right = new int[rightLength];
- //将array中的值分别对应复制到两个子数组中
- for (int i=0; i<leftLength; i++) {
- left[i] = array[i];
- }
- for (int i=0; i<rightLength; i++) {
- right[i] = array[leftLength+i];
- }
- //递归利用合并排序,排序子数组
- left = mergeSort(left);
- right = mergeSort(right);
- //设置初始索引
- int i = 0;
- int j = 0;
- for (int k=0; k<array.length; k++) {
- //如果左边数据索引到达边界则取右边的值
- if (i == leftLength && j < rightLength) {
- array[k] = right[j];
- j++;
- //如果右边数组索引到达边界,取左数组的值
- } else if (i < leftLength && j == rightLength) {
- array[k] = left[i];
- i++;
- //如果均为到达则取,较小的值
- } else if (i < leftLength && j < rightLength) {
- if (left[i] > right[j]) {
- array[k] = right[j];
- j++;
- } else {
- array[k] = left[i];
- i++;
- }
- }
- }
- }
- return array;
- /*
- * 复杂度分析:
- * 由于采用了递归,设解决长度为n的数组需要的时间为T(n),则分解成两个长度为n/2的子
- * 数组后,需要的时间为T(n/2),合并需要时间Θ(n)。所以有当n>1时,T(n)=2T(n/2)+Θ(n),
- * 当n=1时,T(1)=Θ(1)
- * 解这个递归式,设Θ(1)=c,(c为常量),则Θ(n)=cn。
- * 有上式可得T(n/2)=2T(n/4)+Θ(n/2),T(n/4)=2T(n/8)+Θ(n/4)....依次带入可得
- * 所以可以有T(n)=nT(1)+Θ(n)+2Θ(n/2)+4Θ(n/4)...+(2^lgn)Θ(n/(2^lgn)),其中共有lgn个Θ(n)相加。
- * 即T(n)=cn+cnlgn
- * 所以,时间复杂度为:Θ(nlgn)
- */
- }
- private static void printArray() {
- for (int i : input) {
- System.out.print(i + " ");
- }
- }
- }
本文转自mushiqianmeng 51CTO博客,原文链接:http://blog.51cto.com/mushiqianmeng/730242,如需转载请自行联系原作者