C#实现RSA加密解密

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介:

RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。

  RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。

  RSA的缺点主要有:

A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个

长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048bits长的密钥,其他实体使用1024比特的密钥。C)RSA密钥长度随着保密级别提高,增加很快。下表列出了对同一安全级别所对应的密钥长度。

 

保密级别 对称密钥长度(bit) RSA密钥长度(bit) ECC密钥长度(bit) 保密年限
80 80 1024 160 2010
112 112 2048 224 2030
128 128 3072 256 2040
192 192 7680 384 2080
256 256 15360 512 2120

 这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。早在1973年,英国国家通信总局的数学家Clifford Cocks就发现了类似的算法。但是他的发现被列为绝密,直到1998年才公诸于世。

 

  RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。

 

  RSA的算法涉及三个参数,n、e1、e2。

 

  其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。

 

  e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。

 

  (n及e1),(n及e2)就是密钥对。

 

  RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;

 

  e1和e2可以互换使用,即:

 

  A=B^e2 mod n;B=A^e1 mod n;

 

 

C#代码实现

需引用using System.Security.Cryptography;

 


 
 
  1. /// <summary>  
  2.         /// RSA加密  
  3.         /// </summary>  
  4.         /// <param name="publickey"></param>  
  5.         /// <param name="content"></param>  
  6.         /// <returns></returns>  
  7.         public static string RSAEncrypt(string publickey, string content)  
  8.         {  
  9.             publickey = @"<RSAKeyValue><Modulus>5m9m14XH3oqLJ8bNGw9e4rGpXpcktv9MSkHSVFVMjHbfv+SJ5v0ubqQxa5YjLN4vc49z7SVju8s0X4gZ6AzZTn06jzWOgyPRV54Q4I0DCYadWW4Ze3e+BOtwgVU1Og3qHKn8vygoj40J6U85Z/PTJu3hN1m75Zr195ju7g9v4Hk=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>";  
  10.             RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();  
  11.             byte[] cipherbytes;  
  12.             rsa.FromXmlString(publickey);  
  13.             cipherbytes = rsa.Encrypt(Encoding.UTF8.GetBytes(content), false);  
  14.  
  15.             return Convert.ToBase64String(cipherbytes);  
  16.         }  
  17.  
  18.         /// <summary>  
  19.         /// RSA解密  
  20.         /// </summary>  
  21.         /// <param name="privatekey"></param>  
  22.         /// <param name="content"></param>  
  23.         /// <returns></returns>  
  24.         public static string RSADecrypt(string privatekey, string content)  
  25.         {  
  26.             privatekey = @"<RSAKeyValue><Modulus>5m9m14XH3oqLJ8bNGw9e4rGpXpcktv9MSkHSVFVMjHbfv+SJ5v0ubqQxa5YjLN4vc49z7SVju8s0X4gZ6AzZTn06jzWOgyPRV54Q4I0DCYadWW4Ze3e+BOtwgVU1Og3qHKn8vygoj40J6U85Z/PTJu3hN1m75Zr195ju7g9v4Hk=</Modulus><Exponent>AQAB</Exponent><P>/hf2dnK7rNfl3lbqghWcpFdu778hUpIEBixCDL5WiBtpkZdpSw90aERmHJYaW2RGvGRi6zSftLh00KHsPcNUMw==</P><Q>6Cn/jOLrPapDTEp1Fkq+uz++1Do0eeX7HYqi9rY29CqShzCeI7LEYOoSwYuAJ3xA/DuCdQENPSoJ9KFbO4Wsow==</Q><DP>ga1rHIJro8e/yhxjrKYo/nqc5ICQGhrpMNlPkD9n3CjZVPOISkWF7FzUHEzDANeJfkZhcZa21z24aG3rKo5Qnw==</DP><DQ>MNGsCB8rYlMsRZ2ek2pyQwO7h/sZT8y5ilO9wu08Dwnot/7UMiOEQfDWstY3w5XQQHnvC9WFyCfP4h4QBissyw==</DQ><InverseQ>EG02S7SADhH1EVT9DD0Z62Y0uY7gIYvxX/uq+IzKSCwB8M2G7Qv9xgZQaQlLpCaeKbux3Y59hHM+KpamGL19Kg==</InverseQ><D>vmaYHEbPAgOJvaEXQl+t8DQKFT1fudEysTy31LTyXjGu6XiltXXHUuZaa2IPyHgBz0Nd7znwsW/S44iql0Fen1kzKioEL3svANui63O3o5xdDeExVM6zOf1wUUh/oldovPweChyoAdMtUzgvCbJk1sYDJf++Nr0FeNW1RB1XG30=</D></RSAKeyValue>";  
  27.             RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();  
  28.             byte[] cipherbytes;  
  29.             rsa.FromXmlString(privatekey);  
  30.             cipherbytes = rsa.Decrypt(Convert.FromBase64String(content), false);  
  31.  
  32.             return Encoding.UTF8.GetString(cipherbytes);  
  33.         } 

 


本文转自linzheng 51CTO博客,原文链接:http://blog.51cto.com/linzheng/1078716

相关文章
|
4月前
|
存储 安全 数据安全/隐私保护
打造安全防线!Python AES&RSA加密工具,黑客绕道走的秘籍
【9月更文挑战第9天】随着数字化时代的到来,信息安全问题日益凸显。本文将介绍如何使用Python结合AES与RSA两种加密算法,构建强大的加密工具。AES以其高效性和强安全性著称,适用于大量数据的快速加密;RSA作为非对称加密算法,在加密小量数据及实现数字签名方面表现卓越。通过整合两者,可以构建既安全又灵活的加密系统。首先,需要安装pycryptodome库。接着,实现AES加密与解密功能,最后利用RSA加密AES密钥,确保其安全传输。这种设计不仅提高了数据传输效率,还增强了密钥交换的安全性,为敏感数据提供坚实保护。
249 43
|
4月前
|
安全 算法 网络安全
浅谈非对称加密(RSA)
浅谈非对称加密(RSA)
198 0
|
3月前
|
存储 安全 算法
C#一分钟浅谈:数据加密与解密技术
【10月更文挑战第3天】在数字化时代,信息安全至关重要。数据加密作为保障信息不被未授权访问的有效手段,通过特定算法将明文转换为密文,确保即使数据被截获也难以解读。本文从基础概念入手,介绍C#中实现数据加密的方法,涵盖对称加密(如AES、DES)与非对称加密(如RSA),并通过具体示例代码演示如何使用`System.Security.Cryptography.Aes`类完成AES加密和解密过程。此外,还强调了密钥管理及安全策略的重要性。
102 4
|
3月前
|
算法 安全 Go
RSA加密算法详解与Python和Go实现
RSA加密算法详解与Python和Go实现
235 1
|
3月前
|
算法 安全 网络安全
使用 Python 实现 RSA 加密
使用 Python 实现 RSA 加密
140 2
|
4月前
|
存储 安全 算法
RSA在手,安全我有!Python加密解密技术,让你的数据密码坚不可摧
【9月更文挑战第11天】在数字化时代,信息安全至关重要。传统的加密方法已难以应对日益复杂的网络攻击。RSA加密算法凭借其强大的安全性和广泛的应用场景,成为保护敏感数据的首选。本文介绍RSA的基本原理及在Python中的实现方法,并探讨其优势与挑战。通过使用PyCryptodome库,我们展示了RSA加密解密的完整流程,帮助读者理解如何利用RSA为数据提供安全保障。
156 5
|
4月前
|
安全 算法 数据安全/隐私保护
深度揭秘!Python加密技术的背后,AES与RSA如何守护你的数据安全
【9月更文挑战第10天】随着数字化时代的到来,数据安全成为企业和个人面临的重大挑战。Python 作为功能强大的编程语言,在数据加密领域扮演着重要角色。AES 和 RSA 是两种主流加密算法,分别以对称和非对称加密方式保障数据安全。AES(Advanced Encryption Standard)因其高效性和安全性,在数据加密中广泛应用;而 RSA 则利用公钥和私钥机制,在密钥交换和数字签名方面表现卓越。
94 3
|
4月前
|
存储 安全 数据库
双重防护,无懈可击!Python AES+RSA加密方案,构建最强数据安全堡垒
【9月更文挑战第11天】在数字时代,数据安全至关重要。AES与RSA加密技术相结合,构成了一道坚固防线。AES以其高效性保障数据加密,而RSA则确保密钥安全传输,二者相辅相成,提供双重保护。本文通过Python代码示例展示了这一加密方案的魅力,强调了其在实际应用中的重要性和安全性。使用HTTPS等安全协议传输加密密钥和密文,确保数据在数字世界中自由流通而无忧。
87 1
|
4月前
|
安全 数据安全/隐私保护 Python
情书也能加密?Python AES&RSA,让每一份数据都充满爱的密码
【9月更文挑战第8天】在这个数字化时代,情书不再局限于纸笔,也可能以电子形式在网络中传递。为了确保其安全,Python提供了AES和RSA等加密工具,为情书编织爱的密码。首先,通过安装pycryptodome库,我们可以利用AES对称加密算法高效保护数据;接着,使用RSA非对称加密算法加密AES密钥和IV,进一步增强安全性。即使情书被截获,没有正确密钥也无法解读内容。让我们用Python为爱情编织一张安全的网,守护每份珍贵情感。
58 2
|
5月前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
363 1