图像放缩之双线性内插值

简介: 一:数学原理 在临近点插值的数学基础上,双线性插值,不是简单copy源像素的值,而是获取四个最邻 近目标像素的像素值乘以权重系数,简单的数学公式可以表示为: D(x, y) = S(j, k) * a + S(j+1, k) *b + S(j+1,k+1) * c + S(j, K+1...

一:数学原理

在临近点插值的数学基础上,双线性插值,不是简单copy源像素的值,而是获取四个最邻

近目标像素的像素值乘以权重系数,简单的数学公式可以表示为:

D(x, y) = S(j, k) * a + S(j+1, k) *b + S(j+1,k+1) * c + S(j, K+1) * d             公式一

 

问题转化如何提取源像素的中四个临近点,根据临近点插值中从目标像素寻找最临近的源像

素点的方法:

Sx= Dx * (Sh/Dh) // row

Sy= Dy * (Sw/Dw) // column

公式的详细说明参见这里http://blog.csdn.net/jia20003/article/details/6907152

计算出来的值是浮点数坐标,分别取整数部分坐标为(j, k), 小数部分坐标为(t, u)


根据小数部分的(t,u)坐标,首先进行水平方向的权重计算得出

Q11 = S(j,k) * (1-t) + S(j, k+1) * t;

Q22 = S(j+1, k) * (1-t) + S(j+1,K+1) *t

利用Q11, Q22的值,进行垂直方向权重计算得出计算采样点值

D(x, y) = Q11*(1-u) + Q22 * u; 把Q11, Q22带入,最终有等式:

D(x, y) = S(j, k) *(1-t)*(1-u) + S(j, k+1)*t*(1-u) + S(j+1,k)*(1-t)*u + S(j+1,k+1)*t*u

从而得出四个对应的权重系数分别为:

a = (1-t)*(1-u)

b = (1-t)*u

c = t*u

d = t*(1-u)

带入公式一,即可得出目标像素的值。

 

二:双线性内插值算法优缺点

双线性内插值算法在图像的放缩处理中,具有抗锯齿功能, 是最简单和常见的图像放缩算法,但是双线性内插值算法没有考虑边缘和图像的梯度变化,相比之下双立方插值算法更好解决这些问题。

 

三:关键程序代码解析

根据目标像素坐标,计算采样点浮点数坐标的代码如下:

float rowRatio = ((float)srcH)/((float)destH);

float colRatio = ((float)srcW)/((float)destW);

double srcRow = ((float)row)*rowRatio;

double srcCol = ((float)col)*colRatio;

 

计算采样点的整数坐标和小数部分坐标代码如下:

double j = Math.floor(srcRow);

double t = srcRow – j

double k = Math.floor(srcCol);

double u = srcCol - k;

 

根据小数坐标(t,u)来计算四个相邻像素点权重系数代码如下:

double coffiecent1 = (1.0d-t)*(1.0d-u);

double coffiecent2 = (t)*(1.0d-u);

double coffiecent3 = t*u;

double coffiecent4 = (1.0d-t)*u;

 

处理边缘像素代码如下:

return x>max ? max : x<min? min : x;

 

四:程序运行效果如下


左边为源图像,右边为基于双线性内插值放大两倍以后的图像


五:双线性内插值JAVA算法代码

public class BilineInterpolationScale implements ImageScale {
	public BilineInterpolationScale() {
		
	}
	/**
	 * 
	 */
	@Override
	public int[] imgScale(int[] inPixelsData, int srcW, int srcH, int destW, int destH) {
		double[][][] input3DData = processOneToThreeDeminsion(inPixelsData, srcH, srcW);
		int[][][] outputThreeDeminsionData = new int[destH][destW][4];
		float rowRatio = ((float)srcH)/((float)destH);
		float colRatio = ((float)srcW)/((float)destW);
		for(int row=0; row<destH; row++) {
			// convert to three dimension data
			double srcRow = ((float)row)*rowRatio;
			double j = Math.floor(srcRow);
			double t = srcRow - j;
			for(int col=0; col<destW; col++) {
				double srcCol = ((float)col)*colRatio;
				double k = Math.floor(srcCol);
				double u = srcCol - k;
				double coffiecent1 = (1.0d-t)*(1.0d-u);
				double coffiecent2 = (t)*(1.0d-u);
				double coffiecent3 = t*u;
				double coffiecent4 = (1.0d-t)*u;
				
				
				outputThreeDeminsionData[row][col][0] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][0] +
				coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][0] +
				coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][0] +
				coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][0]); // alpha
				
				outputThreeDeminsionData[row][col][1] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][1] +
						coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][1] +
						coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][1] +
						coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][1]); // red
				
				outputThreeDeminsionData[row][col][2] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][2] +
						coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][2] +
						coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][2] +
						coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][2]);// green
				
				outputThreeDeminsionData[row][col][3] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][3] +
						coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][3] +
						coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][3] +
						coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][3]); // blue
			}
		}
		
		return convertToOneDim(outputThreeDeminsionData, destW, destH);
	}
	
	private int getClip(int x, int max, int min) {
		return x>max ? max : x<min? min : x;
	}
	
	/* <p> The purpose of this method is to convert the data in the 3D array of ints back into </p>
	 * <p> the 1d array of type int. </p>
	 * 
	 */
	public int[] convertToOneDim(int[][][] data, int imgCols, int imgRows) {
		// Create the 1D array of type int to be populated with pixel data
		int[] oneDPix = new int[imgCols * imgRows * 4];


		// Move the data into the 1D array. Note the
		// use of the bitwise OR operator and the
		// bitwise left-shift operators to put the
		// four 8-bit bytes into each int.
		for (int row = 0, cnt = 0; row < imgRows; row++) {
			for (int col = 0; col < imgCols; col++) {
				oneDPix[cnt] = ((data[row][col][0] << 24) & 0xFF000000)
						| ((data[row][col][1] << 16) & 0x00FF0000)
						| ((data[row][col][2] << 8) & 0x0000FF00)
						| ((data[row][col][3]) & 0x000000FF);
				cnt++;
			}// end for loop on col


		}// end for loop on row


		return oneDPix;
	}// end convertToOneDim
	
	private double [][][] processOneToThreeDeminsion(int[] oneDPix2, int imgRows, int imgCols) {
		double[][][] tempData = new double[imgRows][imgCols][4];
		for(int row=0; row<imgRows; row++) {
			
			// per row processing
			int[] aRow = new int[imgCols];
			for (int col = 0; col < imgCols; col++) {
				int element = row * imgCols + col;
				aRow[col] = oneDPix2[element];
			}
			
			// convert to three dimension data
			for(int col=0; col<imgCols; col++) {
				tempData[row][col][0] = (aRow[col] >> 24) & 0xFF; // alpha
				tempData[row][col][1] = (aRow[col] >> 16) & 0xFF; // red
				tempData[row][col][2] = (aRow[col] >> 8) & 0xFF;  // green
				tempData[row][col][3] = (aRow[col]) & 0xFF;       // blue
			}
		}
		return tempData;
	}


}


目录
相关文章
|
4月前
|
算法 计算机视觉
基于轮廓提取的 图像填充法
这篇文章介绍了一种基于轮廓提取的图像填充法,使用CVPR2021开源的pidinet项目进行轮廓提取,再结合OpenCV的floodFill算法实现图像的动态填充和复原功能。
|
6月前
|
计算机视觉
OpenCV图像像素值统计
OpenCV图像像素值统计
|
6月前
|
算法 Python
扭曲图像 鼻子拉伸
【6月更文挑战第28天】
31 0
|
6月前
|
Web App开发 算法 Java
图像放缩之双线性内插值
图像放缩之双线性内插值
29 0
|
7月前
|
算法 计算机视觉
缩放图像
【5月更文挑战第12天】缩放图像。
46 5
|
6月前
|
算法 Shell
图像放缩之临近点插值
图像放缩之临近点插值
33 0
|
7月前
|
API 计算机视觉
【OpenCV】—图像对比度、亮度值调整
【OpenCV】—图像对比度、亮度值调整
|
机器学习/深度学习 人工智能 文字识别
OpenCV-字典法实现数字识别(尺寸归一化+图像差值)
OpenCV-字典法实现数字识别(尺寸归一化+图像差值)
122 0
|
资源调度 计算机视觉
CV10 图像模糊(均值、高斯、中值、双边滤波)
当我们只想得到感兴趣的物体时,通过图像模糊,可以将那些尺寸和亮度较小的物体过滤掉,较大的物体则易于检测。除了降低噪声,这就是图像平滑(模糊)的另一个重要应用:减少噪点,突出ROI,以便目标提取。
385 0