图像放缩之双线性内插值

简介: 一:数学原理 在临近点插值的数学基础上,双线性插值,不是简单copy源像素的值,而是获取四个最邻 近目标像素的像素值乘以权重系数,简单的数学公式可以表示为: D(x, y) = S(j, k) * a + S(j+1, k) *b + S(j+1,k+1) * c + S(j, K+1...

一:数学原理

在临近点插值的数学基础上,双线性插值,不是简单copy源像素的值,而是获取四个最邻

近目标像素的像素值乘以权重系数,简单的数学公式可以表示为:

D(x, y) = S(j, k) * a + S(j+1, k) *b + S(j+1,k+1) * c + S(j, K+1) * d             公式一

 

问题转化如何提取源像素的中四个临近点,根据临近点插值中从目标像素寻找最临近的源像

素点的方法:

Sx= Dx * (Sh/Dh) // row

Sy= Dy * (Sw/Dw) // column

公式的详细说明参见这里http://blog.csdn.net/jia20003/article/details/6907152

计算出来的值是浮点数坐标,分别取整数部分坐标为(j, k), 小数部分坐标为(t, u)


根据小数部分的(t,u)坐标,首先进行水平方向的权重计算得出

Q11 = S(j,k) * (1-t) + S(j, k+1) * t;

Q22 = S(j+1, k) * (1-t) + S(j+1,K+1) *t

利用Q11, Q22的值,进行垂直方向权重计算得出计算采样点值

D(x, y) = Q11*(1-u) + Q22 * u; 把Q11, Q22带入,最终有等式:

D(x, y) = S(j, k) *(1-t)*(1-u) + S(j, k+1)*t*(1-u) + S(j+1,k)*(1-t)*u + S(j+1,k+1)*t*u

从而得出四个对应的权重系数分别为:

a = (1-t)*(1-u)

b = (1-t)*u

c = t*u

d = t*(1-u)

带入公式一,即可得出目标像素的值。

 

二:双线性内插值算法优缺点

双线性内插值算法在图像的放缩处理中,具有抗锯齿功能, 是最简单和常见的图像放缩算法,但是双线性内插值算法没有考虑边缘和图像的梯度变化,相比之下双立方插值算法更好解决这些问题。

 

三:关键程序代码解析

根据目标像素坐标,计算采样点浮点数坐标的代码如下:

float rowRatio = ((float)srcH)/((float)destH);

float colRatio = ((float)srcW)/((float)destW);

double srcRow = ((float)row)*rowRatio;

double srcCol = ((float)col)*colRatio;

 

计算采样点的整数坐标和小数部分坐标代码如下:

double j = Math.floor(srcRow);

double t = srcRow – j

double k = Math.floor(srcCol);

double u = srcCol - k;

 

根据小数坐标(t,u)来计算四个相邻像素点权重系数代码如下:

double coffiecent1 = (1.0d-t)*(1.0d-u);

double coffiecent2 = (t)*(1.0d-u);

double coffiecent3 = t*u;

double coffiecent4 = (1.0d-t)*u;

 

处理边缘像素代码如下:

return x>max ? max : x<min? min : x;

 

四:程序运行效果如下


左边为源图像,右边为基于双线性内插值放大两倍以后的图像


五:双线性内插值JAVA算法代码

public class BilineInterpolationScale implements ImageScale {
	public BilineInterpolationScale() {
		
	}
	/**
	 * 
	 */
	@Override
	public int[] imgScale(int[] inPixelsData, int srcW, int srcH, int destW, int destH) {
		double[][][] input3DData = processOneToThreeDeminsion(inPixelsData, srcH, srcW);
		int[][][] outputThreeDeminsionData = new int[destH][destW][4];
		float rowRatio = ((float)srcH)/((float)destH);
		float colRatio = ((float)srcW)/((float)destW);
		for(int row=0; row<destH; row++) {
			// convert to three dimension data
			double srcRow = ((float)row)*rowRatio;
			double j = Math.floor(srcRow);
			double t = srcRow - j;
			for(int col=0; col<destW; col++) {
				double srcCol = ((float)col)*colRatio;
				double k = Math.floor(srcCol);
				double u = srcCol - k;
				double coffiecent1 = (1.0d-t)*(1.0d-u);
				double coffiecent2 = (t)*(1.0d-u);
				double coffiecent3 = t*u;
				double coffiecent4 = (1.0d-t)*u;
				
				
				outputThreeDeminsionData[row][col][0] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][0] +
				coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][0] +
				coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][0] +
				coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][0]); // alpha
				
				outputThreeDeminsionData[row][col][1] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][1] +
						coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][1] +
						coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][1] +
						coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][1]); // red
				
				outputThreeDeminsionData[row][col][2] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][2] +
						coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][2] +
						coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][2] +
						coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][2]);// green
				
				outputThreeDeminsionData[row][col][3] = (int)(coffiecent1 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)k,srcW-1, 0)][3] +
						coffiecent2 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)k,srcW-1,0)][3] +
						coffiecent3 * input3DData[getClip((int)(j+1),srcH-1,0)][getClip((int)(k+1),srcW-1,0)][3] +
						coffiecent4 * input3DData[getClip((int)j,srcH-1,0)][getClip((int)(k+1),srcW-1,0)][3]); // blue
			}
		}
		
		return convertToOneDim(outputThreeDeminsionData, destW, destH);
	}
	
	private int getClip(int x, int max, int min) {
		return x>max ? max : x<min? min : x;
	}
	
	/* <p> The purpose of this method is to convert the data in the 3D array of ints back into </p>
	 * <p> the 1d array of type int. </p>
	 * 
	 */
	public int[] convertToOneDim(int[][][] data, int imgCols, int imgRows) {
		// Create the 1D array of type int to be populated with pixel data
		int[] oneDPix = new int[imgCols * imgRows * 4];


		// Move the data into the 1D array. Note the
		// use of the bitwise OR operator and the
		// bitwise left-shift operators to put the
		// four 8-bit bytes into each int.
		for (int row = 0, cnt = 0; row < imgRows; row++) {
			for (int col = 0; col < imgCols; col++) {
				oneDPix[cnt] = ((data[row][col][0] << 24) & 0xFF000000)
						| ((data[row][col][1] << 16) & 0x00FF0000)
						| ((data[row][col][2] << 8) & 0x0000FF00)
						| ((data[row][col][3]) & 0x000000FF);
				cnt++;
			}// end for loop on col


		}// end for loop on row


		return oneDPix;
	}// end convertToOneDim
	
	private double [][][] processOneToThreeDeminsion(int[] oneDPix2, int imgRows, int imgCols) {
		double[][][] tempData = new double[imgRows][imgCols][4];
		for(int row=0; row<imgRows; row++) {
			
			// per row processing
			int[] aRow = new int[imgCols];
			for (int col = 0; col < imgCols; col++) {
				int element = row * imgCols + col;
				aRow[col] = oneDPix2[element];
			}
			
			// convert to three dimension data
			for(int col=0; col<imgCols; col++) {
				tempData[row][col][0] = (aRow[col] >> 24) & 0xFF; // alpha
				tempData[row][col][1] = (aRow[col] >> 16) & 0xFF; // red
				tempData[row][col][2] = (aRow[col] >> 8) & 0xFF;  // green
				tempData[row][col][3] = (aRow[col]) & 0xFF;       // blue
			}
		}
		return tempData;
	}


}


目录
相关文章
|
6月前
|
机器学习/深度学习 人工智能 文字识别
OpenCV-字典法实现数字识别(尺寸归一化+图像差值)
OpenCV-字典法实现数字识别(尺寸归一化+图像差值)
|
6月前
|
定位技术
任意一张图片的CGCS2000坐标配准
任意一张图片的CGCS2000坐标配准
59 0
|
8月前
|
计算机视觉
opencv 之图像的边界填充及一些数据计算
opencv 之图像的边界填充及一些数据计算
利用矩阵进行平移,旋转,缩放等图像变换、创建第二个一模一样的图像并使之进行缩放等操作
利用矩阵进行平移,旋转,缩放等图像变换、创建第二个一模一样的图像并使之进行缩放等操作
|
图形学
Unity 之 获取物体的旋转角正确数值
不管父物体如何设置,都能获取到物体本身旋转角度的正确数值
930 0
|
Java Maven
thumbmailator组件对图像的使用缩放、裁剪、旋转、格式钻换
thumbmailator组件对图像的使用缩放、裁剪、旋转、格式钻换
121 0
第二周作业:matlab实现图像的灰度图像、灰度图像直方图及彩色图像中的像素值进行点运算变换
简介:第二周作业:matlab实现图像的灰度图像、灰度图像直方图及彩色图像中的像素值进行点运算变换
第二周作业:matlab实现图像的灰度图像、灰度图像直方图及彩色图像中的像素值进行点运算变换
|
算法 Java 计算机视觉
常用的像素操作算法:图像加法、像素混合、提取图像中的ROI
常用的像素操作算法:图像加法、像素混合、提取图像中的ROI
309 0
常用的像素操作算法:图像加法、像素混合、提取图像中的ROI
|
计算机视觉 Python
CV:cv2实现检测几何形状并进行识别、输出周长、面积、颜色、形状类型
CV:cv2实现检测几何形状并进行识别、输出周长、面积、颜色、形状类型
CV:cv2实现检测几何形状并进行识别、输出周长、面积、颜色、形状类型
|
Python
基于相同颜色连通像素个数的统计进行图像字符识别
无论是图像,音频的识别,不外乎是对各种特征(特征向量)进行统计归纳。 通过观察,发现这是一张简单的,非常有规律可循的图。 越有规律越容易进行分类。这里的思路就是自左至右依次对相同颜色的像素连通区进行像素个数统计,从而制成像素与字符对应的字典进行识别。
142 0
基于相同颜色连通像素个数的统计进行图像字符识别