一:Mean Shift算法介绍
Mean Shift是一种聚类算法,在数据挖掘,图像提取,视频对象跟踪中都有应用。本文
重要演示Mean Shift算法来实现图像的低通边缘保留滤波效果。其处理以后的图像有点
类似油画一样。Mean Shift算法的输入参数一般有三个:
1. 矩阵半径r,声明大小
2. 像素距离,常见为欧几里德距离或者曼哈顿距离
3. 像素差值value
算法大致的流程如下:
a. 输入像素点P(x, y)
b. 计算该点的像素值pixelv
c. 根据输入的半径r与差值value求出矩阵半径内满足差值像素平均值作为输出像素点值
d. 计算shift与repetition,如果满足条件
e. 继续c ~ d,直到条件不满足退出,得到最终的输出像素值
f. 对输入图像的每个像素重复a ~ e,得到图像输出像素数据
二:色彩空间转换
本文Mean Shift滤波在YIQ颜色空间上完成,关于RGB与YIQ颜色空间转换可以参考
这里:http://en.wikipedia.org/wiki/YIQ我google找来的转换公式截屏:
三:程序效果
滤镜源代码:
package com.gloomyfish.filter.study; import java.awt.image.BufferedImage; public class MeanShiftFilter extends AbstractBufferedImageOp { private int radius; private float colorDistance; public MeanShiftFilter() { radius = 3; // default shift radius colorDistance = 25; // default color distance } public int getRadius() { return radius; } public void setRadius(int radius) { this.radius = radius; } public float getColorDistance() { return colorDistance; } public void setColorDistance(float colorDistance) { this.colorDistance = colorDistance; } @Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { int width = src.getWidth(); int height = src.getHeight(); if ( dest == null ) dest = createCompatibleDestImage( src, null ); int[] inPixels = new int[width*height]; int[] outPixels = new int[width*height]; getRGB( src, 0, 0, width, height, inPixels); // convert RGB color space to YIQ color space float[][] pixelsf = new float[width*height][3]; for(int i=0; i<inPixels.length; i++) { int argb = inPixels[i]; int r = (argb >> 16) & 0xff; int g = (argb >> 8) & 0xff; int b = (argb) & 0xff; pixelsf[i][0] = 0.299f *r + 0.587f *g + 0.114f *b; // Y pixelsf[i][1] = 0.5957f *r - 0.2744f*g - 0.3212f *b; // I pixelsf[i][2] = 0.2114f *r - 0.5226f*g + 0.3111f *b; // Q } int index = 0; float shift = 0; float repetition = 0; float radius2 = radius * radius; float dis2 = colorDistance * colorDistance; for(int row=0; row<height; row++) { int ta = 255, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { int xc = col; int yc = row; int xcOld, ycOld; float YcOld, IcOld, QcOld; index = row*width + col; float[] yiq = pixelsf[index]; float Yc = yiq[0]; float Ic = yiq[1]; float Qc = yiq[2]; repetition = 0; do { xcOld = xc; ycOld = yc; YcOld = Yc; IcOld = Ic; QcOld = Qc; float mx = 0; float my = 0; float mY = 0; float mI = 0; float mQ = 0; int num=0; for (int ry=-radius; ry <= radius; ry++) { int y2 = yc + ry; if (y2 >= 0 && y2 < height) { for (int rx=-radius; rx <= radius; rx++) { int x2 = xc + rx; if (x2 >= 0 && x2 < width) { if (ry*ry + rx*rx <= radius2) { yiq = pixelsf[y2*width + x2]; float Y2 = yiq[0]; float I2 = yiq[1]; float Q2 = yiq[2]; float dY = Yc - Y2; float dI = Ic - I2; float dQ = Qc - Q2; if (dY*dY+dI*dI+dQ*dQ <= dis2) { mx += x2; my += y2; mY += Y2; mI += I2; mQ += Q2; num++; } } } } } } float num_ = 1f/num; Yc = mY*num_; Ic = mI*num_; Qc = mQ*num_; xc = (int) (mx*num_+0.5); yc = (int) (my*num_+0.5); int dx = xc-xcOld; int dy = yc-ycOld; float dY = Yc-YcOld; float dI = Ic-IcOld; float dQ = Qc-QcOld; shift = dx*dx+dy*dy+dY*dY+dI*dI+dQ*dQ; repetition++; } while (shift > 3 && repetition < 100); tr = (int)(Yc + 0.9563f*Ic + 0.6210f*Qc); tg = (int)(Yc - 0.2721f*Ic - 0.6473f*Qc); tb = (int)(Yc - 1.1070f*Ic + 1.7046f*Qc); outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } } setRGB( dest, 0, 0, width, height, outPixels ); return dest; } public String toString() { System.out.println("Mean Shift Filter..."); return "MeanShiftFilter"; } }转载请注明