C++内存分配方式详解——堆、栈、自由存储区、全局/静态存储区和常量存储区【转】

简介: 本文来源:http://www.cnblogs.com/dongsheng/p/3443696.html       栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区。

       本文来源:http://www.cnblogs.com/dongsheng/p/3443696.html

      ,就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区。里面的变量通常是局部变量、函数参数等。在一个进程中,位于用户虚拟地址空间顶部的是用户栈,编译器用它来实现函数的调用。和堆一样,用户栈在程序执行期间可以动态地扩展和收缩。

  ,就是那些由 new 分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个 new 就要对应一个 delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。堆可以动态地扩展和收缩。

  自由存储区,就是那些由 malloc 等分配的内存块,他和堆是十分相似的,不过它是用 free 来结束自己的生命的。

  全局/静态存储区全局变量和静态变量被分配到同一块内存中,在以前的 C 语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过 void* 来访问和操纵,程序结束后由系统自行释放),在 C++ 里面没有这个区分了,他们共同占用同一块内存区。

  常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)

  明确区分堆与栈

  在 BBS 上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。

  首先,我们举一个例子

void f() { int* p=new int[5]; }

      这条短短的一句话就包含了堆与栈,看到 new,我们首先就应该想到,我们分配了一块堆内存,那么指针 p 呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针 p。在程序会先确定在堆中分配内存的大小,然后调用 operator new 分配内存,然后返回这块内存的首地址,放入栈中,他在 VC6 下的汇编代码如下:

      00401028push 14h
  
0040102Acall operator new (00401060)
  
0040102Fadd esp,4
  
00401032mov dword ptr [ebp-8],eax
  
00401035mov eax,dword ptr [ebp-8]
  
00401038mov dword ptr [ebp-4],eax

      这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是 delete p 么?噢,错了,应该是 delete []p,这是为了告诉编译器:我删除的是一个数组,VC6 就会根据相应的 Cookie 信息去进行释放内存的工作。

     

好了,我们回到我们的主题:堆和栈究竟有什么区别?

  主要的区别由以下几点

  1、管理方式不同;

  2、空间大小不同;

  3、能否产生碎片不同;

  4、生长方向不同;

  5、分配方式不同;

  6、分配效率不同;

  管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。

  空间大小:一般来讲在 32 位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:打开工程,依次操作菜单如下:Project->Setting->Link,在 Category 中选中 Output,然后在 Reserve 中设定堆栈的最大值和 commit。注意:reserve 最小值为 4Byte;commit 是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。

  碎片问题:对于堆来讲,频繁的 new/delete 势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。

  生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。

  分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由 malloc 函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。

  分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是 C/C++ 函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

  从这里我们可以看到,堆和栈相比,由于大量 new/delete 的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP 和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。

  虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。

  无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候 debug 可是相当困难的 :)

  对了,还有一件事,如果有人把堆栈合起来说,那它的意思是栈,可不是堆,呵呵,清楚了?

  static 用来控制变量的存储方式和可见性

  函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题: 如果想将函数中此变量的值保存至下一次调用时,如何实现? 最容易想到的方法是定义一个全局的变量,但定义为一个全局变量有许多缺点,最明显的缺点是破坏了此变量的访问范围(使得在此函数中定义的变量,不仅仅受此 函数控制)。需要一个数据对象为整个类而非某个对象服务,同时又力求不破坏类的封装性,即要求此成员隐藏在类的内部,对外不可见。

  static 的内部机制

  静态数据成员要在程序一开始运行时就必须存在。因为函数在程序运行中被调用,所以静态数据成员不能在任何函数内分配空间和初始化。这样,它的空间分配有三个可能的地方,一是作为类的外部接口的头文件,那里有类声明;二是类定义的内部实现,那里有类的成员函数定义;三是应用程序的 main()函数前的全局数据声明和定义处。

  静态数据成员要实际地分配空间,故不能在类的声明中定义(只能声明数据成员)。类声明只声明一个类的“尺寸和规格”,并不进行实际的内存分配,所以在类声明中写成定义是错误的。它也不能在头文件中类声明的外部定义,因为那会造成在多个使用该类的源文件中,对其重复定义。

  static 被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间,静态数据成员按定义出现的先后顺序依次初始化,注意静态成员嵌套时,要保证所嵌套的成员已经初始化了。消除时的顺序是初始化的反顺序。

  static 的优势

  可以节省内存,因为它是所有对象所公有的,因此,对多个对象来说,静态数据成员只存储一处,供所有对象共用。静态数据成员的值对每个对象都是一样,但它的 值是可以更新的。只要对静态数据成员的值更新一次,保证所有对象存取更新后的相同的值,这样可以提高时间效率。引用静态数据成员时,采用如下格式:

  <类名>::<静态成员名>

  如果静态数据成员的访问权限允许的话(即 public 的成员),可在程序中,按上述格式来引用静态数据成员。

  

Ps

  (1) 类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。

  (2) 不能将静态成员函数定义为虚函数。

  (3) 由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊,变量地址是指向其数据类型的指针,函数地址类型是一个“nonmember 函数指针”。

  (4) 由于静态成员函数没有 this 指针,所以就差不多等同于 nonmember 函数,结果就产生了一个意想不到的好处:成为一个 callback 函数,使得我们得以将 c++ 和 c-based x window 系统结合,同时也成功的应用于线程函数身上。

  (5) static 并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空间。

  (6) 静态数据成员在<定义或说明>时前面加关键字 static。

  (7) 静态数据成员是静态存储的,所以必须对它进行初始化。

  (8) 静态成员初始化与一般数据成员初始化不同:

  初始化在类体外进行,而前面不加 static,以免与一般静态变量或对象相混淆;

  初始化时不加该成员的访问权限控制符 private、public;

  初始化时使用作用域运算符来标明它所属类;

  所以我们得出静态数据成员初始化的格式:

  <数据类型><类名>::<静态数据成员名>=<值>

   (9) 为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling 用以生成唯一的标志。

 

 

 

 

相关文章
|
3天前
|
存储 缓存 编译器
【硬核】C++11并发:内存模型和原子类型
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
|
1月前
|
存储 缓存 C语言
【c++】动态内存管理
本文介绍了C++中动态内存管理的新方式——`new`和`delete`操作符,详细探讨了它们的使用方法及与C语言中`malloc`/`free`的区别。文章首先回顾了C语言中的动态内存管理,接着通过代码实例展示了`new`和`delete`的基本用法,包括对内置类型和自定义类型的动态内存分配与释放。此外,文章还深入解析了`operator new`和`operator delete`的底层实现,以及定位new表达式的应用,最后总结了`malloc`/`free`与`new`/`delete`的主要差异。
56 3
|
1月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
129 4
|
2月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
1月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
311 1
|
25天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
1月前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
22 3
|
1月前
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
51 1
|
1月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。