数论 - 素数的运用 --- poj 2689 : Prime Distance

简介: Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 Description The branch of mat...
Prime Distance
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12512   Accepted: 3340

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

 

 

 

Mean: 

 输入两个数l和r,要你找出l~r范围内相邻的最近的素数。

analyse:

 这题的数据范围很大。

我们首先来分析,int范围内(2147483647)的素数都可以用根号(2147483647)内的素数全部筛出来,那就用埃拉托斯尼斯筛法这个范围内的素数都筛出来。然后再来排除l~r范围内的合数就可。其中有一个小技巧,避免了超时。

Time complexity:O(50000*m),其中m为素数的个数。

 

Source code:

 

/*
                   _ooOoo_
                  o8888888o
                  88" . "88
                  (| -_- |)
                  O\  =  /O
               ____/`---'\____
             .'  \\|     |//  `.
            /  \\|||  :  |||//  \
           /  _||||| -:- |||||-  \
           |   | \\\  -  /// |   |
           | \_|  ''\---/''  |   |
           \  .-\__  `-`  ___/-. /
         ___`. .'  /--.--\  `. . __
      ."" '<  `.___\_<|>_/___.'  >'"".
     | | :  `- \`.;`\ _ /`;.`/ - ` : | |
     \  \ `-.   \_ __\ /__ _/   .-` /  /
======`-.____`-.___\_____/___.-`____.-'======
                   `=---='
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
           佛祖镇楼                  BUG辟易
     佛曰:
           写字楼里写字间,写字间里程序员;
           程序人员写程序,又拿程序换酒钱。
           酒醒只在网上坐,酒醉还来网下眠;
           酒醉酒醒日复日,网上网下年复年。
           但愿老死电脑间,不愿鞠躬老板前;
           奔驰宝马贵者趣,公交自行程序员。
           别人笑我忒疯癫,我笑自己命太贱;
           不见满街漂亮妹,哪个归得程序员?
*/

//Memory   Time
// 1347K   0MS
// by : Snarl_jsb
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 50005
#define LL long long
using namespace std;
bool v[N*20];
LL p1[N],p2[N];
LL c1,c2,d1,d2;
LL l,r,num,idx,b,t;

void make_p1()
{
    num=-1;
    for(LL i=2;i<N;++i)
    {
        if(!v[i])
        {
            p1[++num]=i;
        }
        for(LL j=0;j<=num&&i*p1[j]<N;++j)
        {
            v[i*p1[j]]=1;
            if(i%p1[j]==0) break;
        }
    }
//    cout<<num<<endl;
}

void make_p2()
{
    idx=-1;
    memset(v,0,sizeof(v));
    for(LL i=0;i<=num;++i)
    {
        b=l/p1[i];
        while(b*p1[i]<l||b<=1)    //一个关键的剪枝,不用会超时
            b++;
        for(LL j=b*p1[i];j<=r;j+=p1[i])
        {
            if(j>=l&&j<=r)
            {
                v[j-l+1]=1;
            }
            if(j>r) break;
        }
    }
    for(LL i=l;i<=r;++i)
    {
        if(!v[i-l+1]&&i>1)
        {
            p2[++idx]=i;
        }
    }
}

void solve()
{
    make_p2();
    LL minn=INT_MAX,maxx=INT_MIN;
    for(LL i=1;i<=idx;++i)
    {
        t=p2[i]-p2[i-1];
        if(t<minn)
        {
            minn=t;
            c1=p2[i-1];
            c2=p2[i];
        }
        if(t>maxx)
        {
            maxx=t;
            d1=p2[i-1];
            d2=p2[i];
        }
    }
}

int main()
{
//    freopen("C:\\Users\\ASUS\\Desktop\\cin.txt","r",stdin);
//    freopen("C:\\Users\\ASUS\\Desktop\\cout.txt","w",stdout);
    make_p1();
    while(~scanf("%I64d %I64d",&l,&r))
    {
        solve();
        if(idx<1) puts("There are no adjacent primes.");
        else
        {
            printf("%I64d,%I64d are closest, %I64d,%I64d are most distant.\n",c1,c2,d1,d2);
        }
    }
    return 0;
}

  

目录
相关文章
|
算法
poj 2479 Maximum sum(求最大子段和的延伸)
看完最大连续子段和 的 dp算法 这个很容易理解,我用dplift[i]保存第1到第i个之间的最大子段和,dpright[i]保存第i到第n个之间的最大子段和,最终结果就是dplift[i]+dpright[i+1]中最大的一个。
49 0
|
6月前
PTA-求100以内的素数
求100以内的素数
57 0
|
6月前
PTA-求指定范围内的素数
求指定范围内的素数
84 0
PTA 7-4 素数等差数列 (20 分)
2004 年,陶哲轩(Terence Tao)和本·格林(Ben Green)证明了:对于任意大的 n,均存在 n 项全由素数组成的等差数列。
113 0
POJ 2689 Prime Distance (埃氏筛 区间筛)
POJ 2689 Prime Distance (埃氏筛 区间筛)
110 0
POJ-2389,Bull Math(大数乘法)
POJ-2389,Bull Math(大数乘法)
【欧拉计划第 7 题】第 10001 个素数 10001st prime
【欧拉计划第 7 题】第 10001 个素数 10001st prime
143 0
|
安全
D-POJ-3126 Prime Path
Description The ministers of the cabinet were quite upset by the message from the Chief of...
1126 0
|
人工智能 Java
HDU 1003 Max Sum【动态规划求最大子序列和详解 】
Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 250714    Accepted Submission(s): 593...
1272 0