数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

简介: Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case Time Limit: 4000MS Descri...
Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 29046   Accepted: 7342
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 2 54).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2

Source

 

 

 

Mean: 

 略。

analyse:

 输入的n很大,我们不可能再用筛法来求素数,这时Miller_Rabin算法就显得尤为重要。

若n不是素数,需要进行质因数分解,同样的问题,n很大,我们不可能用试除法来进行质因数分解,那样必会tle。这时就必须使用pollard_rho算法来进行质因数分解。

其实Miller_Rabin算法和pollard_rho算法很多时候是组合在一起用的。

Time complexity:O(n)  一般情况下是O(n)

 

Source code:

 

//Memory   Time
// 1347K   0MS
// by : Snarl_jsb
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 1000010
#define LL long long
using namespace std;


//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;  //随机算法判定次数,S越大,判错概率越小


//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
    a%=c;
    b%=c;
    long long ret=0;
    while(b)
    {
        if(b&1){ret+=a;ret%=c;}
        a<<=1;
        if(a>=c)a%=c;
        b>>=1;
    }
    return ret;
}



//计算  x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
    if(n==1)return x%mod;
    x%=mod;
    long long tmp=x;
    long long ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}





//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=pow_mod(a,x,n);
    long long last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0){x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}


//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

long long gcd(long long a,long long b)
{
    if(a==0)return 1;
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
//对n进行素因子分解
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        return;
    }
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}

int main()
{
    //srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
    long long n;
    long long t;
    cin>>t;
    while(t--)
    {
        scanf("%I64d",&n);
    	if(n==1) continue;
        if(Miller_Rabin(n))printf("Prime\n");
        else
		{
			tol=0;
			findfac(n);
            long long minn=INT_MAX;
			for(int i=0;i<tol;i++)
			{
			    if(factor[i]<minn)
                {
                    minn=factor[i];
                }
			}
            printf("%I64d\n",minn);
        }
    }
    return 0;
}

  

目录
相关文章
|
25天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
56 1
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
53 2
|
2月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
45 4
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
79 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
4月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
82 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
2月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
35 0
|
4月前
|
机器学习/深度学习 自然语言处理 算法
利用机器学习算法进行自动化测试
利用机器学习算法进行自动化测试
|
4月前
|
算法 安全 测试技术
Go - 常用签名算法的基准测试
Go - 常用签名算法的基准测试
43 2
|
4月前
|
JavaScript 前端开发 测试技术
Vue.js开发者必看!Vue Test Utils携手端到端测试,打造无懈可击的应用体验,引领前端测试新风尚!
【8月更文挑战第30天】随着Vue.js的普及,构建可靠的Vue应用至关重要。测试不仅能确保应用质量,还能提升开发效率。Vue Test Utils作为官方测试库,方便进行单元测试,而结合端到端(E2E)测试,则能构建全面的测试体系,保障应用稳定性。本文将带你深入了解如何使用Vue Test Utils进行单元测试,通过具体示例展示如何测试组件行为;并通过Cypress进行E2E测试,确保整个应用流程的正确性。无论是单元测试还是E2E测试,都能显著提高Vue应用的质量,让你更加自信地交付高质量的应用。
84 0
|
4月前
|
Java 测试技术
Java SpringBoot Test 单元测试中包括多线程时,没跑完就结束了
Java SpringBoot Test 单元测试中包括多线程时,没跑完就结束了
94 0