前面学习了线程基本的概念和创建线程的两种方法,现在看看多线程如何处理竞争条件(racing condition)的问题,当多个线程同时执行的时候,怎么进行控制。
比如说,下面的例子中 我使用了第二种创建的方式,自定义一个类,继承Thread类,然后自定义run()来执行我的方法。在这个run方法里面,每次都对全局变量加1
在主线程里面,他调用一个自己定义的函数,在这个函数里面创建了5000个线程;每个线程都加入一个列表,然后对每个对象都使用join,这是确保主线程等着直到所有子线程完成。最后输出结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
import
time
import
threading
some_var
=
0
class
IncrementThread(threading.Thread):
def
run(
self
):
#we want to read a global variable
#and then increment it
global
some_var
read_value
=
some_var
print
(
"some_var in %s is %d"
%
(
self
.name, read_value))
some_var
=
read_value
+
1
print
(
"some_var in %s after increment is %d"
%
(
self
.name, some_var))
def
use_increment_thread():
threads
=
[]
start
=
time.time()
for
i
in
range
(
5000
):
t
=
IncrementThread()
threads.append(t)
t.start()
for
t
in
threads:
t.join()
print
(
"Total time %s"
%
(time.time()
-
start))
print
(
"After 5000 modifications, some_var should have become 5000"
)
print
(
"After 5000 modifications, some_var is %d"
%
(some_var,))
use_increment_thread()
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Total time
1.7780036926269531
After
5000
modifications, some_var should have become
5000
After
5000
modifications, some_var
is
4987
|
可以看见结果并不是5000,这是为啥呢? 如果查看过程,会发现有些线程刚刚获取了一个值,还未来得及处理,执行的权力就转交给了另外一个线程,这样就导致计数错误。为了确保每一个线程都成功的执行了他应该执行的代码,我们可以加一把锁。
1
2
3
4
5
6
|
some_var
in
Thread
-
1524
is
1523
some_var
in
Thread
-
1524
after increment
is
1524
some_var
in
Thread
-
1525
is
1524
some_var
in
Thread
-
1526
is
1524
some_var
in
Thread
-
1526
after increment
is
1525
some_var
in
Thread
-
1527
is
1525
|
下面是修订过的代码,通过使用Lock()函数,我们在执行代码前acquire(),之后release(),在当前线程完成这段代码之前,其他的线程不可以执行相同的操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
some_var
=
0
lock
=
threading.Lock()
class
IncrementThread(threading.Thread):
def
run(
self
):
#we want to read a global variable
#and then increment it
global
some_var
lock.acquire()
read_value
=
some_var
print
(
"some_var in %s is %d"
%
(
self
.name, read_value))
some_var
=
read_value
+
1
print
(
"some_var in %s after increment is %d"
%
(
self
.name, some_var))
lock.release()
def
use_increment_thread():
threads
=
[]
start
=
time.time()
for
i
in
range
(
5000
):
t
=
IncrementThread()
threads.append(t)
t.start()
for
t
in
threads:
t.join()
print
(
"Total time %s"
%
(time.time()
-
start))
print
(
"After 5000 modifications, some_var should have become 5000"
)
print
(
"After 5000 modifications, some_var is %d"
%
(some_var,))
use_increment_thread()
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Total time
1.6369926929473877
After
5000
modifications, some_var should have become
5000
After
5000
modifications, some_var
is
5000
|
线程锁,除了上面的Lock()之外,还有一些常用的,比如
Rlock(),允许多重嵌套锁,而Lock()只能锁一次;
还有一个常见的是BoundedSemaphore(信标),可以指定一次锁几个
例如,我可以指定一次放行5个,30个线程分6次出来
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
-
*
-
coding:utf
-
8
-
*
-
import
threading
import
time
NUM
=
10
def
func(i,l):
global
NUM
# 上锁
l.acquire()
# 30,5 25m5,20
NUM
-
=
1
time.sleep(
2
)
print
(NUM,i)
# 开锁
l.release()
# lock = threading.Lock()
# lock = threading.RLock()
lock
=
threading.BoundedSemaphore(
5
)
for
i
in
range
(
30
):
t
=
threading.Thread(target
=
func,args
=
(i,lock,))
t.start()
|
还有一种放行的方式叫做Event(),他是统一的放行或者堵塞。
工作方式是通过一个flag的值,set()设置为True,clear()设置为False。如果flag为False,wait()则会堵塞。初始化的时候flag默认为False,即堵塞
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:Alex Li
import
threading
def
func(i,e):
print
(i)
e.wait()
# 检测是什么等,如果是红灯,停;绿灯,行
print
(i
+
100
)
event
=
threading.Event()
#初始化,flag设置为False(红灯)
for
i
in
range
(
10
):
t
=
threading.Thread(target
=
func, args
=
(i,event,))
t.start()
#========
# event.clear() # 设置成红灯,可以不写,因为初始化已经实现了
inp
=
input
(
'>>>'
)
if
inp
=
=
"1"
:
event.
set
()
# 设置成绿灯
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
2
3
4
5
6
7
8
9
>>>
1
100
104
103
105
107
109
102
106
101
108
|
最后我们来看看condition(条件),我们可以灵活的设置一次放行1个或者多个线程。这些线程都hang住,直到收到notify(通知)才放行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
import
threading
class
t1(threading.Thread):
def
__init__(
self
,i,con):
self
.i
=
i
self
.con
=
con
super
(t1,
self
).__init__()
def
run(
self
):
print
(
self
.i)
self
.con.acquire()
self
.con.wait()
print
(
self
.i
+
100
)
self
.con.release()
c
=
threading.Condition()
def
test(con):
for
i
in
range
(
10
):
t
=
t1(i,con)
t.start()
while
True
:
inp
=
input
(
'>>>'
)
if
inp
=
=
'q'
:
break
con.acquire()
con.notify(
int
(inp))
con.release()
test(c)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
2
3
4
5
6
7
8
9
>>>
2
>>>
100
101
3
>>>
102
103
104
4
>>>
105
107
108
106
|
可以看见上面的代码里面,在wait()和notify()的前后都上了锁,这个锁是初始化的时候自动创建的。如果我们把他去掉,他会直接抛出异常
1
2
3
4
5
6
7
8
|
Traceback (most recent call last):
File
"C:/Users/yli/Documents/Tencent Files/38144205/FileRecv/FileRecv/day11/s6.py"
, line
56
,
in
<module>
test(c)
File
"C:/Users/yli/Documents/Tencent Files/38144205/FileRecv/FileRecv/day11/s6.py"
, line
53
,
in
test
con.notify(
int
(inp))
File
"C:\Program Files\Python3\lib\threading.py"
, line
343
,
in
notify
raise
RuntimeError(
"cannot notify on un-acquired lock"
)
RuntimeError: cannot notify on un
-
acquired lock
|
看看源码,他的确是强调只能对上锁的线程进行操作
1
2
3
4
5
6
7
8
9
10
11
|
def
notify(
self
, n
=
1
):
"""Wake up one or more threads waiting on this condition, if any.
If the calling thread has not acquired the lock when this method is
called, a RuntimeError is raised.
This method wakes up at most n of the threads waiting for the condition
variable; it is a no-op if no threads are waiting.
"""
if
not
self
._is_owned():
raise
RuntimeError(
"cannot notify on un-acquired lock"
)
all_waiters
=
self
._waiters
waiters_to_notify
=
_deque(_islice(all_waiters, n))
|
conditon还有一种写法是wait_for,他后面参数需要传入一个函数的名字,然后他会内部调用这个函数,如果返回值为真,那么就继续,否则就等着
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
import
threading
def
condition():
ret
=
False
r
=
input
(
'>>>'
)
if
r
=
=
'true'
:
ret
=
True
else
:
ret
=
False
return
ret
def
func(i,con):
print
(i)
con.acquire()
con.wait_for(condition)
print
(i
+
100
)
con.release()
c
=
threading.Condition()
for
i
in
range
(
10
):
t
=
threading.Thread(target
=
func, args
=
(i,c,))
t.start()
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
"C:\Program Files\Python3\python.exe"
"C:/Users/yli/Documents/Tencent Files/38144205/FileRecv/FileRecv/day11/s7.py"
0
>>>
1
2
3
4
5
6
7
8
9
true
100
>>>true
101
>>>ksdf
>>>true
103
>>>
1
>>>
1
>>>
>>>
|
当我们学完conditon之后,如果回头看前面event()的源码,会发现他本质就是调用的condition,当他放行的时候,他直接放行了所有的线程;因此Event的效果是要么全部停,要么全部开通
1
2
3
4
5
6
7
8
9
10
|
class
Event:
"""Class implementing event objects.
Events manage a flag that can be set to true with the set() method and reset
to false with the clear() method. The wait() method blocks until the flag is
true. The flag is initially false.
"""
# After Tim Peters' event class (without is_posted())
def
__init__(
self
):
self
._cond
=
Condition(Lock())
self
._flag
=
False
|
1
2
3
4
5
6
7
8
|
def
set
(
self
):
"""Set the internal flag to true.
All threads waiting for it to become true are awakened. Threads
that call wait() once the flag is true will not block at all.
"""
with
self
._cond:
self
._flag
=
True
self
._cond.notify_all()
|