【计算机网络】局域网学习笔记

本文涉及的产品
访问控制,不限时长
简介: 参考书籍 《计算机网络-自顶向下》       作者 James F. Kurose 《计算机网络技术基础教程》 作者  刘四清, 龚建萍 (教科书) 《图解TCP/IP》                     作者  竹下隆史,荒井透, 刘田幸雄 局域网的定义 局域网(Local Area NetWork, LAN)是将较小的地理区域内的计算机或数据终端设备连接在一起的通信网络。

参考书籍

《计算机网络-自顶向下》       作者 James F. Kurose
《计算机网络技术基础教程》 作者  刘四清, 龚建萍 (教科书)
《图解TCP/IP》                     作者  竹下隆史,荒井透, 刘田幸雄

局域网的定义

局域网(Local Area NetWork, LAN)是将较小的地理区域内的计算机或数据终端设备连接在一起的通信网络。
 

决定局域网性能的因素

决定局域网性能的主要有三个因素: 传输介质, 拓扑结构, 介质访问控制方法
1.  传输介质
常用的传输介质包括双绞线,同轴电缆和光纤等, 此外,还有用于建筑物间通信的无线传输。传输介质的特性将影响网络数据通信的质量。
2. 拓扑结构
常用的局域网拓扑结构有星型结构,总线型结构,环型结构,树型结构和混合型结构
3. 介质访问控制方法
介质访问控制方法是局域网最重要的一项基本技术,因为它对局域网体系结构,工作过程和网络性能产生了决定性影响。常用的介质访问控制方法包括: CSMA/CD, 和令牌环
 

介质访问控制方法

 

CSMA/CD

CSMA/CD的全称叫载波监听多路访问/冲突检测技术(Carrier Sense Multiple Access/Collision), 它是一种争用协议:网络中各个站采用先到先得的方式占用信道发送数据,如果多个网站同时发送帧,则会产生冲突现象。
 
下面我们把CSMA/CD分成两部分介绍:
 
1.CSMA (载波监听多路访问)
 
在一个由多个节点共享的信道中, 一个节点在传输帧前先监听信道:
  • 如果监听到信道空闲,那么就开始传输帧
  • 如果监听到信道正忙,那么等到监听到信道空闲的的时候再传输帧

 

 

2. CD(冲突检测)
 
但是仅仅CSMA技术是不够的,因为可能有一种情况: 发送帧前监听的时候,信道是空闲的,但在发送帧的过程中, 有其他节点发送的帧经过信道而发生碰撞 所以从发送数据开始到结束该节点都要做冲突检测(CD)的工作
 
  • 如果没有检测到冲突,帧的发送将正常完成
  • 如果某个节点在发送帧的过程中检测到了冲突(来自其他节点的信号能量),那么它将先后发生以下过程:

             1. 停止传输它的帧

             2. 发送一个48比特的阻塞(jam)信号

             3. 随机延时一段时间后进行重发, 这个阶段被称作是指数后退(exponential backoff)阶段

 

 

 

令牌环(Token-Ring)

令牌环是一种适用于环形网络的介质访问控制方法,这种技术的关键在于一个叫做“令牌”的特殊的帧
  • “令牌”帧沿着环路循环
  • 当各个节点没有信息发送时,令牌被标记为空闲状态
  • 当一个节点要发送信息时,则等待空闲令牌通过本站,然后将令牌改为忙状态,紧随其后将数据发送到环上。
  • 为了防止令牌的丢失或重复,必须设置一个监控站,以保证环路中有且只有一个令牌在绕行
 

 

 
优点:
  • 因为令牌的作用,每次只能有一个节点在发送数据,不必担心冲突问题
  • 每个节点都有通过平等循环获得令牌的机会,即使网络拥堵也不会导致性能下降
缺点:
  •   要设置监控站以维护令牌, 比较复杂。
 
 
 

局域网的分类

局域网可以分成两大类: 共享介质局域网(Shared LAN)和交换式局域网(Switched LAN)
这两大类还可以进一步细分:
共享介质局域网: 以太网, 令牌环网和FDDI
交换式局域网: 交换以太网,ATM局域网和在此基础上发展起来的虚拟局域网
 
 

 

 

共享介质局域网

 
下面我将介绍三种主要的共享介质局域网:  以太网, FDDI和令牌环网。 (其中最主要,最重要的是以太网)
 

FDDI

(采用令牌环的介质访问控制方法)
FDDI全称是光纤分布式数据接口(Fiber Distributed Data Interface,FDDI)是一个使用光纤的介质的高性能局域网, 它的传输速率是100Mbps,网络覆盖的最大距离可达200KM。
 
FDDI的结构特点
 
FDDI的最大特点是它的双环结构: 一个环顺时针发送信号,另一个环逆时针发送信号,分别被称为主环(Primary Ring)和副环(Secondary Ring),主环用于传输数据,副环作为备份,这样的设计使得FDDI具有一定程度的容错能力
  • 当一个环发生故障,则使用另一个环代替
  • 如果两个环在一个点发生断路,则两个环连成一个单环
 

 

 
FDDI的发展
 
由于FDDI具有高速/技术成熟/双环结构的特点,所以曾经在主干网上或计算机间的高速连接上广泛地使用了FDDI,但随着以太网的快速发展(快速以太网的出现)以及相比之下价格高昂的问题,FDDI就逐渐淡出了应用领域 (被以太网踢出了历史和市场的舞台)
 

令牌环网

结构特性
 
这里可参考前面令牌环介质访问控制方法那一节
 
令牌环网的发展
令牌环网源自IBM开发的令牌环局域网技术,前面的FDDI其实是在令牌环网的基础上进行扩展的一个产物。 由于建设价格高居不下以及所支持的提供商逐渐减少的原因,除了IBM的环境以外始终未能得到普及,并且随着以太网的广泛使用,人们已经不再使用令牌环技术(也是被以太网踢出了历史和市场的舞台)
 

以太网

 
以太网的发展
 
以太网的发展非常快速, 先后经历了以下四个阶段:
  • 传统以太网 (10Mbps Ethernet)
  • 快速以太网 (100Mbps Ethernet)
  • 吉位以太网 (1000Mbps Ethernet)
  • 万兆位以太网(10000 Mbps Ethernet)
以太网的分类
 
如下图所示,以太网有众多不同的类型。其中, 100BASE中的100, 1000BASE中的1000以及10G BASE中的20G分别指的是10Mbps,100Mbps和10Gbps的传输速率, 而后面追加的5,2,T,F则表示的是传输介质
 

 

 
以太网的市场状况
 
现在,以太网几乎完全占领着现有的有线局域网市场。 面对其他的局域网技术例如令牌环,FDDI和ATM的挑战, 以太网不断演化和发展并保持着它的地位。 所以说,以太网是到目前为止最流行的局域网技术
 
以太网成功的原因
  • 以太网是第一个广泛部署的高速LAN,因为它部署得早,所以网络管理员非常熟悉以太网,当其他LAN技术问世的时候,他们不愿意转而用之
  • 令牌环,FDDI和ATM在价格上比以太网更昂贵, 在技术上,它们也比以太网更复杂
  • 起初,其他LAN技术(如FDDI和ATM)的优势是数据速率高,然而却被后来发展出来的快速以太网等追平甚至超越
  • 以太网硬件(如适配器和交换机)很便宜
 

共享介质局域网面临的难题和交换式以太网的出现

 
前面我们介绍的这些共享介质局域网(FDDI,令牌环网,以太网)在发展的过程中遇到了一些共同的难题:
 
它们所使用的介质访问控制方法(如CSMS/CD,令牌环技术), 是用来保证每个节点都能公平地使用公共传输介质的,所以随着局域网规模不断扩大,一个局域网里的节点不断增加——
  • 每个节点能分到的平均带宽越来越少(在一个10Mbps的局域网中有N个节点,那么每个节点能分到的平均带宽为10Mbps / N)
  • 冲突和重发大量发生,网络效率急剧下降,网络传输时延也将会增长
 
为此, 人们发展出了交换式局域网
 

交换式局域网

 
【注意】 典型的交换式局域网是交换式以太网
 
相比于共享介质型局域网,  交换式局域网是一种“非共享介质网络”, 局域网中的计算机不是连接到同一条链路, 而是和交换机端口形成一对一的连接。 交换机, 构成了交换式局域网的核心, 如下图所示:
 

 

 

交换式局域网带来的好处

(相比于共享介质型局域网,)
 
1. 解决平均带宽问题 把“共享”变成“独享”,  不用担心用户增多造成的每个节点平均带宽减少的问题
2. 消除碰撞 : 在使用交换机构建的局域网中, 没有因碰撞而浪费的带宽
3. 灵活的接口速度: 在共享介质型局域网中,不能在同一个局域网中连接不同速率的站点(如10Base-5仅能够连接10Mbps的站点) 而在交换式局域网中, 由于每个站点都独享介质,在交换机上可以配置10Mbps,100Mbps的自适应的端口, 用于连接不同速率的站点,接口速度有很大的灵活性
4. 能够互联不同标准的局域网:如在一台交换机上能集成以太网,FDDI和ATM
5. 能实现全双工通信
 
共享介质型局域网只能实现半双工通信: 同一时刻只能发送数据或接受数据
 

 

交换式局域网实现了全双工通信: 能同时发送数据和接收数据

 

 

交换机的功能

交换机有两项功能: 过滤(filtering)转发(forwarding)
过滤: 交换机决定一个帧是应该转发到某个接口还是应当将其丢弃的功能
转发决定一个帧应该被导向哪个接口
 
这两项功能是由交换机表(switch table)完成
 
交换机表图示

 

交换机表的组成

交换机表包含三部分内容:
 
1. 节点的MAC地址
2. 节点连接的交换机接口
3. 用于节点的表项放置在表中的时间

交换表的工作过程

举个例子:
 
假定具有目的地址DD-DD-DD-DD-DD-DD的帧从交换机接口X到达, 交换机用MAC地址DD-DD-DD-DD-DD-DD索引它的表, 可能存在的三种情况如下:
1. 表中有一个表项将DD-DD-DD-DD-DD-DD和接口Y (Y ≠ X)相连起来, 在这种情况下, 交换机将该帧发送到和Y接口相连的节点 ,执行转发功能
2.  表中有一个表项将DD-DD-DD-DD-DD-DD和接口X相连起来(刚好该帧就是从接口X到达的,没有转发必要), 该交换机通过丢弃该帧执行过滤功能
3. 如果表中没有针对DD-DD-DD-DD-DD-DD的表项。 在这种情况下, 交换机向和交换机相连的所有节点广播该帧。
 

交换机的自学习(self-learning)

交换机具有强大的自学习功能: 它的交换表能够自动地,动态的建立, 即不需要来自网络管理员或者配置协议的任何干预。
 
实现方式具体如下:
  1. 交换表初始为空
  2. 对于在某接口接收到的每个入帧,该交换机在其表中存储: <1>该帧源地址字段中的MAC地址(是源地址不是目的地址!)  <2>该帧到达的接口    <3> 当前时间
  3. 在经过一段时间(称为老化期 aging time)后,交换机如果没有接收到以该地址作为源地址的帧,就在表中删除这个地址。 以这种方式,如果一台PC被另外一台PC替代, 原来的PC的MAC地址将会从该交换机表中被删除掉
          
例如:
假设在9: 39 分,源地址为01-12-23-34-45-56的一个帧从接口2到达。 假设这个地址不在交换机表中,交换机将在它的表中增加一个新选项:
 

 

其实啊,我只是把你们喝咖啡的时间,都用来喝啤酒而已
相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
云安全基础课 - 访问控制概述
课程大纲 课程目标和内容介绍视频时长 访问控制概述视频时长 身份标识和认证技术视频时长 授权机制视频时长 访问控制的常见攻击视频时长
目录
相关文章
|
3月前
|
Ubuntu 网络安全 图形学
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
在Ubuntu 20.04系统中解决网络图标消失和无法连接有线网络问题的方法,其中第三种方法通过检查并确保Windows防火墙中相关服务开启后成功恢复了网络连接。
847 0
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
|
7月前
|
存储 算法 网络虚拟化
【计算机网络】学习笔记,第三篇:数据链路层
现在的光纤宽带接入 FTTx 都要使用 PPPoE 的方式进行接入。在 PPPoE 弹出的窗口中键入在网络运营商购买的用户名和密码,就可以进行宽带上网了 利用 ADSL 进行宽带上网时,从用户个人电脑到家中的 ADSL 调制解调器之间,也是使用 RJ-45 和 5 类线(即以太网使用的网线)进行连接的,并且也是使用 PPPoE 弹出的窗口进行拨号连接的
93 5
|
3月前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
78 0
|
5月前
|
Java
java网络编程 UDP通信协议实现局域网内文件的发送和接收
java网络编程 UDP通信协议实现局域网内文件的发送和接收
java网络编程 UDP通信协议实现局域网内文件的发送和接收
|
5月前
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习+面经】Transformer 网络学习笔记
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
215 2
|
4月前
|
监控 安全 网络协议
|
8月前
|
监控 Java 数据库连接
【后台开发】TinyWebser学习笔记(1)网络编程基础知识
【后台开发】TinyWebser学习笔记(1)网络编程基础知识
64 3
|
8月前
|
缓存 网络协议 网络虚拟化
计算机网络 第八章 局域网(习题)
计算机网络 第八章 局域网(习题)
|
7月前
|
缓存 网络协议 数据安全/隐私保护
计算机网络:局域网的数据链路层
计算机网络:局域网的数据链路层
82 0
|
8月前
|
网络协议 Docker 容器
Ubantu docker学习笔记(七)容器网络
Ubantu docker学习笔记(七)容器网络