限流系统如何发现系统的热点

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
性能测试 PTS,5000VUM额度
云原生网关 MSE Higress,422元/月
简介: 限流系统是对资源调用的控制组件,主要涵盖授权、限流、降级、调用统计等功能模块。限流系统有两个基础概念:资源和策略,对特定的资源采取不同的控制策略,起到保障应用稳定性的作用。限流系统提供了多个默认切入点覆盖了大部分使用场景,保证对应用的低侵入性;同时也支持硬编码或者自定义aop的方式来支持特定的使用.

限流系统是对资源调用的控制组件,主要涵盖授权、限流、降级、调用统计等功能模块。限流系统有两个基础概念:资源和策略,对特定的资源采取不同的控制策略,起到保障应用稳定性的作用。限流系统提供了多个默认切入点覆盖了大部分使用场景,保证对应用的低侵入性;同时也支持硬编码或者自定义aop的方式来支持特定的使用需求。限流系统提供了全面的运行状态监控,实时监控资源的调用情况(qpsrt、限流降级等信息)。

如何利用限流系统的特性,来统计热点呢?在这里,我们主要介绍一下,限流系统是如何来判断热点的,它的工作原理是什么,它的性能如何;它目前已经在哪些场景里面使用。

1. 热点的特性

a) 海量的统计基数

可能的热点分为两种,一种是事前已知的(例如营销人员的已经整理出秒杀商品的列表),另外一种是突发的,不可以预计的(例如被刷单的商品,或者是黑马产品)。对于前面一种,只需要计算这些已知的列表即可,但是对于后者,由于基数是海量的,举个例子,如果有一个方法,它传入的参数是商品id, 这个商品的id以淘宝的规模来说,是上亿的。如果把所有的商品id都记录统计起来,再进行排序,统计出热点,这对于实时的工具来说,是不可行的。所以为了解决热点统计,我们必须找到一个好的数据结构,这个结构能够仅保存最常常被访问的一定数量商品id,并且可以控制结构的大小,统计量。这是非常重要的一个步骤。

b) 统计热点的单位时间的维度。

这里有一个必须强调的概念: 单位时间而不是总访问量。 打个比方,一个商品,在一小时以内被访问了3600次,但是它很均匀的每秒被访问一次,那么这个商品可能在系统的承受范围之内,并会对系统带来损伤;而另外一个商品,它一小时被访问了60次,但都落在同一秒,那么这个商品可能就是一个热点商品。对于单位时间的定义,是决策一个参数是否成为热点的一个重要的因素;如果太粗,必然会带来毛刺,导致系统性能不平滑;如果太细,会给性能带来挑战

c) 在分布式系统给统计带来的挑战

热点的统计范围可能是单机,也可能是集群。如何能快速的在集群中统计,并且让限流规则在单机上生效,是非常重要的。

2. 如何解决上述问题

2.1 首先,找到一个可行的数据结构

这个结构必须满足访问修改快速,并发性好,占用内存空间少,存储的个数大小可控制,并且可以驱逐访问量少的entry,从而可以达到实时统计热点的查询数字。

其实,业界有一个现成的好结构。它就是google团队用于guava里的ConcurrentLinkedHashMap (http://code.google.com/p/concurrentlinkedhashmap)。它有下面几个特点:

2.1.a 支持并发。它是实现了ConcurrentMap接口的。基本上它的实现是遵循concurrentMap的思想的。这里就不多赘述。

2.1.b 它把我们普通concurrenthashmapsegments用一个额外的双链表维护起来,通过操作这个链表,里面的entry可以在O(1)的时间之类删除或者重新排序。当一个entry被访问,则被移动到表头;当这个map的容量超过预设,则移除位于链表尾的entry。这样就可以保证表头是最新被使用的entry,表尾是最近最少被使用的entry


2.1.c 从另外一个角度来说,可以把ConcurrentLinkedHashMap 分成两个view. 一个是同步的,一个是异步的。Hashtable对于调用方来说是同步的,链表对于调用方式不透明的,异步的。


2.1.d 性能和concurrenthashmap的比较, 肯定比concurrenthashmap差,但是属于可以忍受的范围。下面是官方给出的数据


综上所述,我们可以利用这个LRU concurrent map link,保证我们在单位时间内,仅保存有限数量访问量较高的key, 最近比较少访问的key,我们则可以认为它不是热点,当mapSize达到上限之后,清除这个key

2.2 统计单位时间的维度

现在我们来看第二个问题,如何统计单位时间的keyqps. 其实这个正是限流系统的拿手好戏,用动态滑动窗口平滑的统计qps.

简单的说,限流系统为每个簇点(可以简单的理解为需要统计的方法),做了一个滑动窗口。更具体的说,即限流系统把采样窗口长度设为2秒,这个采样窗口又被分割为20个格子。通过用一定的算法来统计这20个格子的平均滑动窗口累积平均值来进行决策。
为什么采用平均滑动窗口累计平均值是为了削平毛刺qps(在某个点突发的qps)对整体的影响。该公式如下:

更具体的说明在http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average 可以查到。

说到这里,聪明的读者应该早就猜到了,限流系统通过把两个利器结合起来,即滑动窗口和google concurrent link hashmap,可以统计在固定的时间,最常常使用的参数的值。
限流系统数据结构如下所示:


具体的代码在http://gitlab.alibaba-inc.com/middleware-asp/限流系统 欢迎大家来指正

2.3 如何解决集群的挑战

2.3.1 幸运的是,限流系统天生自带获取簇点qps的功能

使用过限流系统的人都会发现,8719这个端口是被限流系统占用了的。通过这个端口,我们可以用获取到簇点的qps统计信息。有了这个后门,我们就可以轻松快速的获取到qps的信息了

2.3.2 如何在大集群里汇总这些qps的信息

接下来要解决的问题就是,如何在上千台机器里面快速汇总这些信息。还好之前我们在做2.0.7的集群统计的时候,有了一定的经验。 这个算法后来也用在了预案分配巨大的url task中。简单的说,就是用一个队列来放任务,多个线程来执行任务,一个线程来merge取回的结果。通过使用这个方法,一个比较大的集群,例如buy等,2秒可以返回统计结果。

有了集群的总体汇总信息之后,我们再将这个信息利用diamond来推广到具体的机器上去。这样的延迟大概是2-3s左右。

3 总结以及限流系统性能报告:

简单的说,存放一个这样的结构,大概大小是8k. 它的默认参数是每个簇点的存放2s的滑动窗口,20个格子,每个格子最多可以保存200个参数,那么在最坏的情况下,这个结构的大小将会是8k+4000个参数大小。

吞吐量在我的日常机器上是29W,在生产机上应该会更好。

相关文章
|
SpringCloudAlibaba 监控 Dubbo
SpringCloudAlibaba篇(三)整合Sentinel(限流、流量整形、熔断降级、系统负载保护、热点防护,分布式服务架构的高可用流量防护组件)
SpringCloudAlibaba篇(三)整合Sentinel(限流、流量整形、熔断降级、系统负载保护、热点防护,分布式服务架构的高可用流量防护组件)
SpringCloudAlibaba篇(三)整合Sentinel(限流、流量整形、熔断降级、系统负载保护、热点防护,分布式服务架构的高可用流量防护组件)
|
3月前
|
Java
典型热点应用问题之启用增量编译的问题如何解决
典型热点应用问题之启用增量编译的问题如何解决
|
4月前
|
存储 缓存 边缘计算
高并发架构设计三大利器:缓存、限流和降级问题之控制浏览器缓存的行为问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之控制浏览器缓存的行为问题如何解决
|
4月前
|
存储 缓存 分布式计算
高并发架构设计三大利器:缓存、限流和降级问题之缓存的应对策略问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之缓存的应对策略问题如何解决
|
4月前
|
算法 API 缓存
高并发架构设计三大利器:缓存、限流和降级问题之固定窗口限流算法的原理是什么
高并发架构设计三大利器:缓存、限流和降级问题之固定窗口限流算法的原理是什么
|
4月前
|
存储 算法 缓存
高并发架构设计三大利器:缓存、限流和降级问题之使用RateLimiter来限制操作的频率问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用RateLimiter来限制操作的频率问题如何解决
|
4月前
|
存储 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之滑动日志算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之滑动日志算法问题如何解决
|
4月前
|
开发者 Sentinel 微服务
高并发架构设计三大利器:缓存、限流和降级问题之降级策略中的有限状态机的三种状态切换的问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之降级策略中的有限状态机的三种状态切换的问题如何解决
|
缓存 前端开发 JavaScript
设计一个高流量高并发的系统需要关注哪些点
我相信每一位开发同学多多少少都想参与或负责一个高用户、高访问、高并发的系统吧😁。一来可以增加自己实际的项目经验,有应对高并发场景的解决方案,二来是有个高并发的项目经验无疑是自己简历的一个大大的加分项。但是奈何很多人都没有机会可以参与这样的项目,本文从以下几点介绍一下设计一个高流量高并发的系统需要经历哪些步骤以及考虑哪些因素($\color{red}{文章中的不足之处还请大佬们多多指点}$)。
158 0
你的系统支持限流吗?
很多时候为了系统的安全性以及负载考虑,我们都会在请求量过高的时候对系统进行限流处理,那么今天我就我自己做过的一个系统里面的限流方案来介绍一下
104 0