2013年大数据全球技术峰会观后感

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

这次我有幸参加了51CTO举办的2013年大数据峰会,这次大会的主题是大数据的运维(第一天)以及大数据的分析(第二天)。 

大数据到底是啥意思呢?从字眼上就是很多很大量的数据,可以叫做海量数据。

当数据很小时,你可以用一台机器顶住数据访问压力,再大时你可以加内存换SSD硬盘,或者采购性能很强劲的小型机,通过硬件去解决。

 
从架构层出发,于是就发展到了读写分离,同时有多台Slave备机提供读取业务,这样就降低了数据库的负载。
 
随着数据的增长,发现依靠读写分离也解决不了高负荷高并发的访问,Slave备机延时很大,于是又发展到了对表的水平切分,依靠表的主键取模,把数据平均分散到不同的小表,再分布到各台机器上,可以看做是迁移数据,我之前写过《一篇用户信息表水平切分》的博文,有兴趣的可以去访问: http://hcymysql.blog.51cto.com/5223301/1179880
但这个有一个弊端,就是开发需要更改他们的代码,增加路由访问策略,要知道每张小表是分布到哪台机器上,对开发人员并不是透明的,而对于DBA来说,每次都需要通过手工去拆分,比较繁琐。
 
下面就进入了会议的正题,首先是新浪微博,他们的解决方案是通过数据库前端CACHE层,用redis做缓存,采用nosql型数据库(非传统关系型数据库),降低数据库的负载。他们没有采用memcache,是考虑到数据可以持久化的保存在磁盘上,解决了服务重启后数据不丢失的问题,且存储的数据类型较多。
 
下面是淘宝,他们的开源软件Oceanbase海量数据平台(数据库中间件),其原理也是通过对主键的取模,把一张大表拆分成N张小表并存储到各台服务器上,前端应用访问海量平台,经过海量平台处理,把请求发送到后端MySQL数据库上,MySQL完成数据查询,再经过中间件,将结果送回客户端。这样对开发来说是透明的,代码层加上API接口,开发不需要知道每张小表具体放在哪台服务器上,DBA也减少了繁琐的水平拆表的工作。
 
目前应用在收藏夹、直通车报表、天猫评价等OLTP和OLAP在线业务,线上数据量已经超过一千亿条。
更多介绍请参考官网: http://alibaba.github.io/oceanbase/
 
第二天,主要介绍了数据分析与挖掘,当数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求。Hadoop基于MapReduce在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,目前已成为当前互联网企业主流的大数据分析平台。
 
目前淘宝,百度,暴风影音,360安全卫士都采用hadoop做海量数据分析。
 
关键词:MySQL、nosql、hadoop已成为当今互联网行业最流行、最前端的技术。

 

 
















本文转自hcymysql51CTO博客,原文链接:http://blog.51cto.com/hcymysql/1188630 ,如需转载请自行联系原作者

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
17天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
62 2
|
2月前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
117 4
|
19天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
2月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
13天前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
19天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
22天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
47 3
|
22天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
52 2
|
25天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
73 2