[CTO札记]Twitter系统运维经验(转)

简介:
最近看到的另外一个介绍Twitter技术的视频[ Slides] [ Video (GFWed)],这是Twitter的John Adams在 Velocity 2009的一个演讲,主要介绍了Twitter在系统运维方面一些经验。 本文大部分整理的观点都在Twitter(@ xmpp)上发过,这里全部整理出来并补充完整。
Twitter没有自己的硬件,都是由NTTA来提供,同时NTTA负责硬件相关的网络、带宽、负载均衡等业务,Twitter operations team 只关注核心的业务,包括
  • 》Performance,
  • 》Availability,
  • 》Capacity Planning(容量规划),
  • 》配置管理
等,这个可能跟国内一般的互联网公司有所区别。
一. 运维经验
* Metrics
Twitter的监控后台几乎都是图表(critical metrics),类似驾驶室的转速表,时速表,让操作者可以迅速的了解系统当前的运作状态。联想到我们做的类似监控后台,数据很多,但往往还需要浏览者做二次分析判断,像这样满屏都是图表的方法做得还不够,可以学习下这方面经验。
据John介绍,可以从图表上看到系统的瓶颈-系统最弱的环节(web, mq, cache, db?);根据图表可以科学的制定系统容量规划,而不是事后救火。
 
* 配置管理
每个系统都需要一个自动配置管理系统,越早越好,这条一整理发到Twitter上去之后引起很多回应。
* Darkmode
配置界面可以enable/disable 高计算消耗或高I/O的功能,也相当于优雅降级,系统压力过大时取消一些非核心但消耗资源大的功能。
* 进程管理
Twitter做了一个”Seppaku” patch, 就是将Daemon在完成了n个requests之后主动kill掉,以保持健康的low memory状态,这种做法据了解国内也有不少公司是这样做。
* 硬件
Twitter将CPU由AMD换成Xeon之后,获得30%性能提升,将CPU由双核/4核换成8核之后,减少了40%的CPU, 不过John也说,这种升级不适合自己购买硬件的公司。
二. 代码协同经验
* Review制度
Twitter有上百个模块,如果没有一个好的制度,容易引起代码修改冲突,并把问题带给最终用户,的source code review制度, 如果提交的代码的svn comment没有”reviewed by xxx”, 则pre-commit脚本会让提交失败, review过的代码提交后会通过自动配置管理系统应用到上百台服务器上。 有@xiaomics同学在Twitter上马上就问,时间成本能否接受?如果有紧急功能怎么办?个人认为紧急修改时有两人在场,一人修改一人review也不是什么难事。
* 部署管理
从部署图表可以看到每个发布版本的CPU及latency变化,如果某个新版本latency图表有明显的向上跳跃,则说明该发布版本存在问题。另外在监控首页列出各个模块最后deploy版本的时间,可以清楚的看到代码库的现状。
* 团队沟通
Campfire来协同工作,campfire有点像群,但是更适合协同工作。对于Campfire就不做更多介绍,可参考 Campfire官方说明。
 
三. Cache
  • Memcache key hash, 使用FNV hash 代替 MD5 hash,因为FNV更快。
  • 开发了Cache Money plugin(Ruby), 给应用程序提供read-through, write-through cache, 就像一个db访问的钩子,当读写数据库的时候会自动更新cache, 避免了繁琐的cache更新代码。
  • “Evictions make the cache unreliable for important configuration data”,Twitter使用memcache的一条经验是,不同类型的数据需放在不同的mc,避免eviction,跟作者前文Memcached数据被踢(evictions>0)现象分析中的一些经验一致。
  • Memcached SEGVs, Memcached崩溃(cold cache problem)据称会给这种高度依赖Cache的Web 2.0系统带来灾难,不知道Twitter具体怎么解决。
  • 在Web层Twitter使用了Varnish作为反向代理,并对其评价较高。



















本文转自DavyYew 51CTO博客,原文链接:http://blog.51cto.com/davyyew/241744 ,如需转载请自行联系原作者

相关文章
|
3月前
|
人工智能 运维 Prometheus
别等系统“炸了”才慌!聊聊AI搞运维故障检测的那些真香时刻
别等系统“炸了”才慌!聊聊AI搞运维故障检测的那些真香时刻
135 0
|
2月前
|
运维 Prometheus 监控
系统崩了怪运维?别闹了,你该问问有没有自动化!
系统崩了怪运维?别闹了,你该问问有没有自动化!
100 9
|
6月前
|
人工智能 运维 自然语言处理
“AI医生”入驻运维现场:聊聊系统健康检查的新姿势
“AI医生”入驻运维现场:聊聊系统健康检查的新姿势
297 78
|
4月前
|
人工智能 运维 监控
HarmonyOS NEXT~鸿蒙系统运维:全面解析与最佳实践
本书《HarmonyOS NEXT~鸿蒙系统运维:全面解析与最佳实践》深入探讨了鸿蒙系统的运维管理。从架构特点到实际操作,涵盖分布式能力、性能优化、安全维护及故障排查。内容包括设备管理、系统监控、安全管理等核心任务,提供常见问题解决方案与工具推荐。面对未来超级终端和AI赋能的挑战,运维人员需不断学习,以充分发挥鸿蒙的分布式优势,为用户带来流畅体验。
201 8
|
4月前
|
机器学习/深度学习 人工智能 运维
运维不靠玄学!用AI预测系统负载,谁用谁说香!
运维不靠玄学!用AI预测系统负载,谁用谁说香!
179 18
|
4月前
|
运维 监控 数据可视化
斩获6.1 star,再见Crontab!这款开源定时任务管理系统让运维更高效
Gocron是一款基于Go语言的轻量级定时任务调度系统,替代传统Linux Crontab。它提供可视化Web界面管理,支持秒级调度、任务依赖配置与多节点执行。核心功能包括:1) 可视化管理;2) 精确调度规则;3) 全链路任务控制;4) 多类型任务支持;5) 完善监控通知。适用于自动化运维、系统监控、数据处理及业务自动化等场景。通过三步快速上手:一键部署、添加任务节点、创建定时任务。相比Crontab和Celery,Gocron更直观高效,适合个人与企业使用。项目地址:https://github.com/ouqiang/gocron。
493 8
|
4月前
|
人工智能 运维 Anolis
|
6月前
|
机器学习/深度学习 人工智能 运维
AI 实时流量分析:运维老司机的“天眼”系统
AI 实时流量分析:运维老司机的“天眼”系统
219 14
|
6月前
|
运维 供应链 前端开发
中小医院云HIS系统源码,系统融合HIS与EMR功能,采用B/S架构与SaaS模式,快速交付并简化运维
这是一套专为中小医院和乡镇卫生院设计的云HIS系统源码,基于云端部署,采用B/S架构与SaaS模式,快速交付并简化运维。系统融合HIS与EMR功能,涵盖门诊挂号、预约管理、一体化电子病历、医生护士工作站、收费财务、药品进销存及统计分析等模块。技术栈包括前端Angular+Nginx,后端Java+Spring系列框架,数据库使用MySQL+MyCat。该系统实现患者管理、医嘱处理、费用结算、药品管控等核心业务全流程数字化,助力医疗机构提升效率和服务质量。
349 4
|
6月前
|
弹性计算 运维 监控
基于进程热点分析与系统资源优化的智能运维实践
智能服务器管理平台提供直观的可视化界面,助力高效操作系统管理。核心功能包括运维监控、智能助手和扩展插件管理,支持系统健康监控、故障诊断等,确保集群稳定运行。首次使用需激活服务并安装管控组件。平台还提供进程热点追踪、性能观测与优化建议,帮助开发人员快速识别和解决性能瓶颈。定期分析和多维度监控可提前预警潜在问题,保障系统长期稳定运行。
231 17