[MySQL优化案例]系列 — 典型性索引引发CPU负载飙升问题

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

收到一个mysql服务器负载告警,上去一看,load average都飙到280多了,用top一看,CPU跑到了336%,不过IO和内存的负载并不高,根据经验,应该又是一起索引引起的惨案了。

看下processlist以及slow query情况,发现有一个SQL经常出现,执行计划中的扫描记录数看着还可以,单次执行耗时为0.07s,还不算太大。乍一看,可能不是它引发的,但出现频率实在太高,而且执行计划看起来也不够完美:

mysql> explain SELECT count(1) FROM a , b WHERE a.id = b.video_id and b.state = 1 AND b.column_id = ’81’\G

*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: b
type: index_merge
possible_keys: columnid_videoid,column_id,state,video_time_stamp,idx_videoid
key: column_id,state
key_len: 4,4
ref: NULL
rows: 100
Extra: Using intersect(column_id,state); Using where
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: a
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: b.video_id
rows: 1
Extra: Using where; Using index

再看下该表的索引情况:

mysql> show index from b\G

*************************** 1. row ***************************
Table: b
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 1
Column_name: id
Collation: A
Cardinality: 167483
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:
*************************** 2. row ***************************
Table: b
Non_unique: 1
Key_name: column_id
Seq_in_index: 1
Column_name: column_id
Collation: A
Cardinality: 8374
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:
*************************** 3. row ***************************
Table: b
Non_unique: 1
Key_name: state
Seq_in_index: 2
Column_name: state
Collation: A
Cardinality: 5
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:

可以看到执行计划中,使用的是index merge,效率自然没有用联合索引(也有的叫做覆盖索引)来的好了,而且 state 字段的基数(唯一性)太差,索引效果很差。删掉两个独立索引,修改成联合看看效果如何:

mysql> show index from b;

*************************** 1. row ***************************
Table: b
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 1
Column_name: id
Collation: A
Cardinality: 128151
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:
*************************** 2. row ***************************
Table: b
Non_unique: 1
Key_name: idx_columnid_state
Seq_in_index: 1
Column_name: column_id
Collation: A
Cardinality: 3203
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:
*************************** 3. row ***************************
Table: b
Non_unique: 1
Key_name: idx_columnid_state
Seq_in_index: 2
Column_name: state
Collation: A
Cardinality: 3463
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:

mysql> explain SELECT count(1) FROM a , b WHERE a.id = b.video_id and b.state = 1  AND b.column_id = ’81’ \G

*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: b
type: ref
possible_keys: columnid_videoid,idx_videoid,idx_columnid_state
key: columnid_videoid
key_len: 4
ref: const
rows: 199
Extra: Using where
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: a
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: b.video_id
rows: 1
Extra: Using where; Using index

 可以看到执行计划变成了只用到了 idx_columnid_state 索引,而且 ref 类型也变成了 const,SQL执行耗时也从0.07s变成了0.00s,相应的CPU负载也从336%突降到了12%不到。

总结下,从多次历史经验来看,如果CPU负载持续很高,但内存和IO都还好的话,这种情况下,首先想到的一定是索引问题,十有八九错不了。


本文转自叶金荣51CTO博客,原文链接:http://blog.51cto.com/imysql/1883563,如需转载请自行联系原作者

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
14天前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
15天前
|
SQL 关系型数据库 MySQL
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
MySQL底层概述—7.优化原则及慢查询
|
7天前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
36 9
|
5天前
|
关系型数据库 MySQL
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
19 3
|
7天前
|
SQL 关系型数据库 MySQL
数据库数据恢复——MySQL简介和数据恢复案例
MySQL数据库数据恢复环境&故障: 本地服务器,安装的windows server操作系统。 操作系统上部署MySQL单实例,引擎类型为innodb,表空间类型为独立表空间。该MySQL数据库没有备份,未开启binlog。 人为误操作,在用Delete命令删除数据时未添加where子句进行筛选导致全表数据被删除,删除后未对该表进行任何操作。
|
3天前
|
监控 关系型数据库 MySQL
如何解决 MySQL 数据库服务器 CPU 飙升的情况
大家好,我是 V 哥。当 MySQL 数据库服务器 CPU 飙升时,如何快速定位和解决问题至关重要。本文整理了一套实用的排查和优化套路,包括使用系统监控工具、分析慢查询日志、优化 SQL 查询、调整 MySQL 配置参数、优化数据库架构及检查硬件资源等步骤。通过一个电商业务系统的案例,详细展示了从问题发现到解决的全过程,帮助你有效降低 CPU 使用率,提升系统性能。关注 V 哥,掌握更多技术干货。
|
1月前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
22天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
121 42
|
13天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
67 25
|
1月前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
366 0