传统分库分表(sharding)的缺陷与破解之法

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介:

标签

PostgreSQL , Greenplum , HybridDB for PostgreSQL , MPP , DIRECT-IO


背景

随着互联网的发展,数据爆炸性的增长,数据库逐渐成为了很多业务的绊脚石,很多业务也哭着喊着要上分布式数据库。

pic

但是,传统的分库分表(sharding)带来的问题较多,得不偿失

传统分库分表问题

1、 扩容不方便(需要重分布数据)

2、 分布键变更很麻烦

3、 分布键选择(架构设计)需要谨慎,甚至很多sharding产品不支持多个分布键、或者不支持随机分布,导致业务不得不使用没有任何意义的自增序列来作为分布键。

4、 无法支持复杂查询。跨库JOIN性能差,甚至只能按分布键JOIN,其他字段不支持JOIN。(因为这种产品架构数据节点之间是孤岛,数据需要在孤岛之间交互,需要通过上层的中间件节点,而这样的话,如果有跨库JOIN,就需要将数据收到中间件节点再JOIN,性能差是可想而知的,甚至打爆中间节点。)

5、 当需要写入、返回大量结果集时,可能把中间件打爆。可能性非常大。

6、 分布式事务性能差,甚至不支持分布式事务。

7、 由于各个数据节点各自为政,实际上这种模式带来的SQL限制多、功能缺失多

8、 SQL功能缺失,导致应用改造成本巨大,(实际上就是限制多)。

9、 全局一致性时间点恢复几乎不可实现,不同的数据节点处于不同的状态,没有一个全局统一的快照管理和恢复机制。

传统分库分表最大的问题实际上还是孤岛问题,导致了一系列的问题。

HybridDB for PG如何破解这些问题

pic

1、实时写入,通过直接写segment(可以做成对业务透明),实现了单机25万行/s的写入能力。通过扩展计算节点,可以扩展整个集群的写入能力。

2、批量导入,通过OSS_EXT,走OSS通道实时写入,我们测试过50台机器的机器,达到了100亿(5.5TB)数据,1251秒导入的性能。

3、全局一致性,HDB PG基于数据库的ACID标准设计,是一个整体,支持全局事务。支持全局一致性。

4、点查,点查能力,每个节点可以实现100万TPS。通过扩展计算节点,可以扩展整个集群的点查TPS能力。

5、复杂查询,核心是MASTER节点的分布式执行计划,MASTER节点收到用户请求后,生成分布式执行计划,并下发给计算节点并行执行。

6、大结果集查询,通过游标,实现大结果集的查询,分页,接收等。

7、UDF,用户可以使用java, python, plpgsql等语言,在HDB PG中实现业务逻辑,实现复杂的查询场景需求。

8、任意列JOIN,由于HDB PG数据节点直接可以重分布数据,不需要走MASTER节点,因此,不需要维表,就可以实现任意列的JOIN,GROUP BY,DISTINCT等。

9、任意distinct,同上。

10、任意group by,同上。

《HybridDB PostgreSQL "Sort、Group、distinct 聚合、JOIN" 不惧怕数据倾斜的黑科技和原理 - 多阶段聚合》

11、MASTER不承担计算,由于MASTER节点不承担计算,所以不会成为计算瓶颈,包括排序在内(MASTER节点采用MERGE SORT,几乎不耗费资源)。

12、机器学习,通过madlib插件,实现了数据库内部的机器学习。

相关资料

http://madlib.incubator.apache.org/

https://pypi.python.org/pypi/pymadlib/0.1.4

https://github.com/pivotalsoftware/PivotalR

https://cran.r-project.org/web/packages/PivotalR/PivotalR.pdf

https://cran.r-project.org/web/packages/PivotalR/vignettes/pivotalr.pdf

13、扩展功能:

资源隔离,通过资源队列,可以管理不同的用户资源使用情况。

HLL,是一个估值插件,可以存储估值数据。

行列混合存储,行列混合存储,支持压缩。

分布键,支持任意键作为分布键,同时支持随机分布,支持多列作为分布键。不需要强制分布键。

分区表,支持多级分区,范围分区,枚举分区。

空间数据,支持PostGIS,可以管理空间数据。

JSON,支持JSON数据类型。

数组,支持多值类型。

全文检索,支持全文检索类型。

正则表达式,支持正则表达式查询语法。

OSS,支持冷热分离存储。

总结

HybridDB for PostgreSQL属于MPP架构,解决了几类问题,实现了HTAP(OLTP和OLAP混合业务):

1、高并发小事务(实时写入、点查),

2、实时复杂大型计算,

3、批处理,

4、冷热数据分离,

5、资源隔离,

6、容量、功能扩展性,

容量水平扩展(支持两种扩容模式,一种原地扩容,一种跨集群扩容),功能(UDF,plpython, pljava, plpgsql,插件)。

7、机器学习。

HybridDB for PG 性能指标

50台机器的集群,一些性能指标如下:

通过增加机器,可以实现线性性能提升。

pic

pic

pic

参考

《HTAP数据库(OLTP+OLAP) - sharding 和 共享分布式存储 数据库架构 优缺点》

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
安全 API 数据安全/隐私保护
API接口知识小结
应用程序接口API(Application Programming Interface),是提供特定业务输出能力、连接不同系统的一种约定。这里包括外部系统与提供服务的系统(中后台系统)或后台不同系统之间的交互点。包括外部接口、内部接口,内部接口又包括:上层服务与下层服务接口、同级接口。
深入探究Camunda加签问题
camunda加签的两种方式
3098 0
|
5月前
|
算法 大数据 调度
【复现】【充换电站】考虑用户充电负荷-最优分时电价互动的光储充换电站优化模型研究(Matlab代码实现)
【复现】【充换电站】考虑用户充电负荷-最优分时电价互动的光储充换电站优化模型研究(Matlab代码实现)
208 0
|
机器学习/深度学习 人工智能 搜索推荐
深度探索人工智能在医疗影像诊断中的应用与挑战####
本文深入剖析了人工智能(AI)技术,特别是深度学习算法在医疗影像诊断领域的创新应用,探讨其如何重塑传统诊断流程,提升诊断效率与准确性。同时,文章也客观分析了当前AI医疗影像面临的主要挑战,包括数据隐私、模型解释性及临床整合难题,并展望了未来发展趋势。 ####
|
缓存 关系型数据库 Nacos
nacos常见问题之服务端不开启鉴权日志一直报403如何解决
Nacos是阿里云开源的服务发现和配置管理平台,用于构建动态微服务应用架构;本汇总针对Nacos在实际应用中用户常遇到的问题进行了归纳和解答,旨在帮助开发者和运维人员高效解决使用Nacos时的各类疑难杂症。
1207 2
|
存储 安全 Java
技术好文:Tacacs+认证详细调研
技术好文:Tacacs+认证详细调研
774 0
|
缓存
Microsoft Store微软商店更新失败/无法更新应用解决方法
Microsoft Store微软商店更新失败/无法更新应用解决方法
11614 0
|
缓存 关系型数据库 MySQL
MySQL高效运行的秘密:BufferPool缓存机制深度剖析!
MySQL高效运行的秘密:BufferPool缓存机制深度剖析!
631 0
MySQL高效运行的秘密:BufferPool缓存机制深度剖析!
|
测试技术 API Python
深入探索:使用 Playwright 处理下拉框的完整指南
本文介绍了如何使用Python和Playwright处理Web应用中的下拉框。Playwright提供了一个简单的`select_option()`方法来选择单选或多选选项,例如:`page.get_by_label('Choose a color').select_option('blue')`。此外,还展示了如何处理动态加载的下拉框,通过`wait_for_selector()`确保选项加载完成后再进行选择。使用Playwright能有效简化自动化测试中的下拉框交互。