在终端设备上实现语音识别:ARM开源了TensorFlow预训练模型

简介:
本文来自AI新媒体量子位(QbitAI)

关键词识别(Keyword Spotting,KWS)是语音识别领域的一个子领域,在用户在智能设备上进行语音交互时起到重要作用。

 关键词识别pipeline

近日,ARM和斯坦福大学合作开源了预训练TensorFlow模型和它们的语音关键词识别代码,并将结果发表在论文Hello Edge: Keyword Spotting on Microcontrollers中。

这个开源库包含了TensorFlow模型和在论文中用到的训练脚本。

在论文中,研究人员还展示了不同的神经网络架构,包含DNN、CNN、Basic LSTM、LSTM、GRU、CRNN和DS-CNN,并将这些架构加入到预训练模型中。

预训练模型地址:

https://github.com/ARM-software/ML-KWS-for-MCU/tree/master/Pretrained_models

论文摘要

在研究中,研究人员评估了神经网络架构,并且在资源受限的微控制器上运行KWS。他们训练了多种神经网络架构变体,并比较变体之间的准确性和存储/计算需求。

 神经网络模型的准确性

研究人员发现,在不损失精确度的情况下,在存储了计算资源受限的微控制器上优化这些神经网络架构可行。

之后,研究人员还进一步探索了DS-CNN架构,并且和其他神经网络架构进行了对比。

结果证明,DS-CNN架构的准确性最高,为95.4%,比超参数相似的DNN模型精确度约高10%。

 超参数搜索中的最佳神经网络

相关资料

论文下载地址:

https://arxiv.org/pdf/1711.07128.pdf

项目代码地址:

https://github.com/ARM-software/ML-KWS-for-MCU

本文作者:林鳞 
原文发布时间:2017-12-14 
相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
20天前
|
人工智能 自然语言处理 语音技术
Step-Audio:开源语音交互新标杆!这个国产AI能说方言会rap,1个模型搞定ASR+TTS+角色扮演
Step-Audio 是由阶跃星辰团队推出的开源语音交互模型,支持多语言、方言和情感表达,能够实现高质量的语音识别、对话和合成。本文将详细介绍其核心功能和技术原理。
286 91
Step-Audio:开源语音交互新标杆!这个国产AI能说方言会rap,1个模型搞定ASR+TTS+角色扮演
|
5月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
138 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
1月前
|
人工智能 物联网 测试技术
FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
小红书开源的工业级自动语音识别模型,支持普通话、中文方言和英语,采用 Encoder-Adapter-LLM 和 AED 架构,实现 SOTA 性能。
366 17
FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
|
1月前
|
人工智能 编解码 语音技术
SpeechGPT 2.0:复旦大学开源端到端 AI 实时语音交互模型,实现 200ms 以内延迟的实时交互
SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的端到端实时语音交互模型,具备拟人口语化表达、低延迟响应和多情感控制等功能。
394 21
SpeechGPT 2.0:复旦大学开源端到端 AI 实时语音交互模型,实现 200ms 以内延迟的实时交互
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
451 5
|
4月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
200 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
213 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
178 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
6月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
180 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别

热门文章

最新文章