lucene正向索引(续)——一个文档的所有filed+value都在fdt文件中!!!

简介:

4.1.3. 域(Field)的数据信息(.fdt,.fdx)

fdxfdt

  • 域数据文件(fdt):
    • 真正保存存储域(stored field)信息的是fdt文件
    • 在一个段(segment)中总共有segment size篇文档,所以fdt文件中共有segment size个项,每一项保存一篇文档的域的信息
    • 对于每一篇文档,一开始是一个fieldcount,也即此文档包含的域的数目,接下来是fieldcount个项,每一项保存一个域的信息。
    • 对于每一个域,fieldnum是域号,接着是一个8位的byte,最低一位表示此域是否分词(tokenized),倒数第二位表示此域是保存字符串数据还是二进制数据,倒数第三位表示此域是否被压缩,再接下来就是存储域的值,比如new Field("title", "lucene in action", Field.Store.Yes, …),则此处存放的就是"lucene in action"这个字符串。
  • 域索引文件(fdx)
    • 由域数据文件格式我们知道,每篇文档包含的域的个数,每个存储域的值都是不一样的,因而域数据文件中segment size篇文档,每篇文档占用的大小也是不一样的,那么如何在fdt中辨别每一篇文档的起始地址和终止地址呢,如何能够更快的找到第n篇文档的存储域的信息呢?就是要借助域索引文件。
    • 域索引文件也总共有segment size个项,每篇文档都有一个项,每一项都是一个long,大小固定,每一项都是对应的文档在fdt文件中的起始地址的偏移量,这样如果我们想找到第n篇文档的存储域的信息,只要在fdx中找到第n项,然后按照取出的long作为偏移量,就可以在fdt文件中找到对应的存储域的信息。
  • 读取域数据信息的代码如下:

Document FieldsReader.doc(int n, FieldSelector fieldSelector)

  • long position = indexStream.readLong();//indexStream points to ".fdx"
  • fieldsStream.seek(position);//fieldsStream points to "fdt"
  • int numFields = fieldsStream.readVInt();
  • for (int i = 0; i < numFields; i++)
    • int fieldNumber = fieldsStream.readVInt();
    • byte bits = fieldsStream.readByte();
    • boolean compressed = (bits & FieldsWriter.FIELD_IS_COMPRESSED) != 0;
    • boolean tokenize = (bits & FieldsWriter.FIELD_IS_TOKENIZED) != 0;
    • boolean binary = (bits & FieldsWriter.FIELD_IS_BINARY) != 0;
    • if (binary)
      • int toRead = fieldsStream.readVInt();
      • final byte[] b = new byte[toRead];
      • fieldsStream.readBytes(b, 0, b.length);
      • if (compressed)
        • int toRead = fieldsStream.readVInt();
        • final byte[] b = new byte[toRead];
        • fieldsStream.readBytes(b, 0, b.length);
        • uncompress(b),
    • else
      • fieldsStream.readString()

4.1.3. 词向量(Term Vector)的数据信息(.tvx,.tvd,.tvf)——term vector用于打分,存储StoreTermVectors的field 

termvector

词向量信息是从索引(index)到文档(document)到域(field)到词(term)的正向信息,有了词向量信息,我们就可以得到一篇文档包含那些词的信息。

  • 词向量索引文件(tvx)
    • 一个段(segment)包含N篇文档,此文件就有N项,每一项代表一篇文档。
    • 每一项包含两部分信息:第一部分是词向量文档文件(tvd)中此文档的偏移量,第二部分是词向量域文件(tvf)中此文档的第一个域的偏移量。
  • 词向量文档文件(tvd)
    • 一个段(segment)包含N篇文档,此文件就有N项,每一项包含了此文档的所有的域的信息。
    • 每一项首先是此文档包含的域的个数NumFields,然后是一个NumFields大小的数组,数组的每一项是域号。然后是一个(NumFields - 1)大小的数组,由前面我们知道,每篇文档的第一个域在tvf中的偏移量在tvx文件中保存,而其他(NumFields - 1)个域在tvf中的偏移量就是第一个域的偏移量加上这(NumFields - 1)个数组的每一项的值。
  • 词向量域文件(tvf)
    • 此文件包含了此段中的所有的域,并不对文档做区分,到底第几个域到第几个域是属于那篇文档,是由tvx中的第一个域的偏移量以及tvd中的(NumFields - 1)个域的偏移量来决定的。
    • 对于每一个域,首先是此域包含的词的个数NumTerms,然后是一个8位的byte,最后一位是指定是否保存位置信息,倒数第二位是指定是否保存偏移量信息。然后是NumTerms个项的数组,每一项代表一个词(Term),对于每一个词,由词的文本TermText,词频TermFreq(也即此词在此文档中出现的次数),词的位置信息,词的偏移量信息。
  • 读取词向量数据信息的代码如下:

TermVectorsReader.get(int docNum, String field, TermVectorMapper)

  • int fieldNumber = fieldInfos.fieldNumber(field);//通过field名字得到field号
  • seekTvx(docNum);//在tvx文件中按docNum文档号找到相应文档的项
  • long tvdPosition = tvx.readLong();//找到tvd文件中相应文档的偏移量
  • tvd.seek(tvdPosition);//在tvd文件中按偏移量找到相应文档的项
  • int fieldCount = tvd.readVInt();//此文档包含的域的个数。
  • for (int i = 0; i < fieldCount; i++) //按域号查找域
    • number = tvd.readVInt();
    • if (number == fieldNumber)
      • found = i;
  • position = tvx.readLong();//在tvx中读出此文档的第一个域在tvf中的偏移量
  • for (int i = 1; i <= found; i++)
    • position += tvd.readVLong();//加上所要找的域在tvf中的偏移量
  • tvf.seek(position);
  • int numTerms = tvf.readVInt();
  • byte bits = tvf.readByte();
  • storePositions = (bits & STORE_POSITIONS_WITH_TERMVECTOR) != 0;
  • storeOffsets = (bits & STORE_OFFSET_WITH_TERMVECTOR) != 0;
  • for (int i = 0; i < numTerms; i++)
    • start = tvf.readVInt();
    • deltaLength = tvf.readVInt();
    • totalLength = start + deltaLength;
    • tvf.readBytes(byteBuffer, start, deltaLength);
    • term = new String(byteBuffer, 0, totalLength, "UTF-8");
    • if (storePositions)
      • positions = new int[freq];
      • int prevPosition = 0;
      • for (int j = 0; j < freq; j++)
        • positions[j] = prevPosition + tvf.readVInt();
        • prevPosition = positions[j];
    • if (storeOffsets)
      • offsets = new TermVectorOffsetInfo[freq];
      • int prevOffset = 0;
      • for (int j = 0; j < freq; j++)
      • int startOffset = prevOffset + tvf.readVInt();
      • int endOffset = startOffset + tvf.readVInt();
      • offsets[j] = new TermVectorOffsetInfo(startOffset, endOffset);
      • prevOffset = endOffset;
 

















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6394882.html ,如需转载请自行联系原作者





相关文章
|
存储 自然语言处理 算法
ES高频面试问题:一张图带你读懂 Elasticsearch 中“正排索引(正向索引)”和“倒排索引(反向索引)”区别
ES高频面试问题:一张图带你读懂 Elasticsearch 中“正排索引(正向索引)”和“倒排索引(反向索引)”区别
ES高频面试问题:一张图带你读懂 Elasticsearch 中“正排索引(正向索引)”和“倒排索引(反向索引)”区别
|
1月前
|
存储 JSON 自然语言处理
es索引文档过程
Elasticsearch 索引文档流程:先通过 REST API 或客户端创建索引,定义文档结构的映射;接着索引 JSON 格式的文档,Elasticsearch 解析、索引并存储;最后,文档以倒排索引形式存储,支持高效全文搜索。
45 5
|
索引
07Lucene索引库的修改
07Lucene索引库的修改
44 0
|
索引
06Lucene索引库的删除
06Lucene索引库的删除
53 0
|
存储 自然语言处理 关系型数据库
Lucene的查询过程
Lucene的查询过程
214 0
|
搜索推荐 Java Apache
Lucene7.2.1系列(二)luke使用及索引文档的基本操作
它有以下功能: - 查看文档并分析其内容(用于存储字段) - 在索引中搜索 - 执行索引维护:索引运行状况检查;索引优化(运行前需要备份) - 从hdfs读取索引 - 将索引或其部分导出为XML格式 - 测试定制的Lucene分析工具 - 创建自己的插件
2494 0