tensorflow笔记:流程,概念和简单代码注释

简介: 1.tensorflow的运行流程 tensorflow的运行流程主要有2步,分别是构造模型和训练。 在构造模型阶段,我们需要构建一个图(Graph)来描述我们的模型。所谓图,也可以理解为流程图,就是将数据的输入->中间处理->输出的过程表示出来,就像下面这样。

1.tensorflow的运行流程

tensorflow的运行流程主要有2步,分别是构造模型训练

在构造模型阶段,我们需要构建一个图(Graph)来描述我们的模型。所谓图,也可以理解为流程图,就是将数据的输入->中间处理->输出的过程表示出来,就像下面这样。 

20160601101108139.png-26.2kB

注意此时是不会发生实际运算的。而在模型构建完毕以后,会进入训练步骤。此时才会有实际的数据输入,梯度计算等操作。那么,如何构建抽象的模型呢?这里就要提到tensorflow中的几个概念:Tensor,Variable,placeholder,而在训练阶段,则需要介绍Session。下面先解释一些上面的几个概念

1.1概念描述


1.1.1 Tensor

Tensor的意思是张量,不过按我的理解,其实就是指矩阵。也可以理解为tensorflow中矩阵的表示形式。Tensor的生成方式有很多种,最简单的就如

import tensorflow as tf # 在下面所有代码中,都去掉了这一行,默认已经导入
a = tf.zeros(shape=[1,2])

 
 

不过要注意,因为在训练开始前,所有的数据都是抽象的概念,也就是说,此时a只是表示这应该是个1*5的零矩阵,而没有实际赋值,也没有分配空间,所以如果此时print,就会出现如下情况:

print(a)
#===>Tensor("zeros:0", shape=(1, 2), dtype=float32)

 
 

只有在训练过程开始后,才能获得a的实际值

sess = tf.InteractiveSession()
print(sess.run(a))
#===>[[ 0.  0.]]

 
 

这边设计到Session概念,后面会提到


1.1.2 Variable

故名思议,是变量的意思。一般用来表示图中的各计算参数,包括矩阵,向量等。例如,我要表示上图中的模型,那表达式就是 

y=Relu(Wx+b)

(relu是一种激活函数,具体可见 这里 )这里 W b 是我要用来训练的参数,那么此时这两个值就可以用Variable来表示。Variable的初始函数有很多其他选项,这里先不提,只输入一个Tensor也是可以的

W = tf.Variable(tf.zeros(shape=[1,2]))

 
 

注意,此时W一样是一个抽象的概念,而且与Tensor不同,Variable必须初始化以后才有具体的值

tensor = tf.zeros(shape=[1,2])
variable = tf.Variable(tensor)
sess = tf.InteractiveSession()
# print(sess.run(variable))  # 会报错
sess.run(tf.initialize_all_variables()) # 对variable进行初始化
print(sess.run(variable))
#===>[[ 0.  0.]]

 
 


1.1.3 placeholder

又叫占位符,同样是一个抽象的概念。用于表示输入输出数据的格式。告诉系统:这里有一个值/向量/矩阵,现在我没法给你具体数值,不过我正式运行的时候会补上的!例如上式中的x和y。因为没有具体数值,所以只要指定尺寸即可

x = tf.placeholder(tf.float32,[1, 5],name='input')
y = tf.placeholder(tf.float32,[None, 5],name='input')

上面有两种形式,第一种x,表示输入是一个[1,5]的横向量。 
而第二种形式,表示输入是一个[?,5]的矩阵。那么什么情况下会这么用呢?就是需要输入一批[1,5]的数据的时候。比如我有一批共10个数据,那我可以表示成[10,5]的矩阵。如果是一批5个,那就是[5,5]的矩阵。tensorflow会自动进行批处理


1.1.4 Session

session,也就是会话。我的理解是,session是抽象模型的实现者。为什么之前的代码多处要用到session?因为模型是抽象的嘛,只有实现了模型以后,才能够得到具体的值。同样,具体的参数训练,预测,甚至变量的实际值查询,都要用到session,看后面就知道了


1.2 模型构建

这里我们使用官方tutorial中的mnist数据集的分类代码,公式可以写作 

z=Wx+ba=softmax(z)

那么该模型的代码描述为

# 建立抽象模型
x = tf.placeholder(tf.float32, [None, 784]) # 输入占位符
y = tf.placeholder(tf.float32, [None, 10])  # 输出占位符(预期输出)
W = tf.Variable(tf.zeros([784, 10]))        
b = tf.Variable(tf.zeros([10]))
a = tf.nn.softmax(tf.matmul(x, W) + b)      # a表示模型的实际输出

# 定义损失函数和训练方法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(a), reduction_indices=[1])) # 损失函数为交叉熵
optimizer = tf.train.GradientDescentOptimizer(0.5) # 梯度下降法,学习速率为0.5
train = optimizer.minimize(cross_entropy)  # 训练目标:最小化损失函数

 
 

可以看到这样以来,模型中的所有元素(图结构,损失函数,下降方法和训练目标)都已经包括在train里面。我们可以把train叫做训练模型。那么我们还需要测试模型

correct_prediction = tf.equal(tf.argmax(a, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

 
 

上述两行代码,tf.argmax表示找到最大值的位置(也就是预测的分类和实际的分类),然后看看他们是否一致,是就返回true,不是就返回false,这样得到一个boolean数组。tf.cast将boolean数组转成int数组,最后求平均值,得到分类的准确率(怎么样,是不是很巧妙)


1.3 实际训练

有了训练模型和测试模型以后,我们就可以开始进行实际的训练了

sess = tf.InteractiveSession()      # 建立交互式会话
tf.initialize_all_variables().run() # 所有变量初始化
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)    # 获得一批100个数据
    train.run({x: batch_xs, y: batch_ys})   # 给训练模型提供输入和输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

 
 

可以看到,在模型搭建完以后,我们只要为模型提供输入和输出,模型就能够自己进行训练和测试了。中间的求导,求梯度,反向传播等等繁杂的事情,tensorflow都会帮你自动完成。


2. 实际代码

实际操作中,还包括了获取数据的代码

"""A very simple MNIST classifier.
See extensive documentation at
http://tensorflow.org/tutorials/mnist/beginners/index.md
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Import data
from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '/tmp/data/', 'Directory for storing data') # 把数据放在/tmp/data文件夹中

mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)   # 读取数据集


# 建立抽象模型
x = tf.placeholder(tf.float32, [None, 784]) # 占位符
y = tf.placeholder(tf.float32, [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
a = tf.nn.softmax(tf.matmul(x, W) + b)

# 定义损失函数和训练方法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(a), reduction_indices=[1]))  # 损失函数为交叉熵
optimizer = tf.train.GradientDescentOptimizer(0.5) # 梯度下降法,学习速率为0.5
train = optimizer.minimize(cross_entropy) # 训练目标:最小化损失函数

# Test trained model
correct_prediction = tf.equal(tf.argmax(a, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# Train
sess = tf.InteractiveSession()      # 建立交互式会话
tf.initialize_all_variables().run()
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    train.run({x: batch_xs, y: batch_ys})
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})

得到的分类准确率在91%左右

转载。原文:http://blog.csdn.net/u014595019/article/details/52677412

目录
相关文章
|
机器学习/深度学习 监控 算法
【tensorflow】连续输入的神经网络模型训练代码
【tensorflow】连续输入的神经网络模型训练代码
|
机器学习/深度学习 TensorFlow 算法框架/工具
【tensorflow】连续输入的线性回归模型训练代码
  get_data函数用于生成随机的训练和验证数据集。首先使用np.random.rand生成一个形状为(10000, 10)的随机数据集,来模拟10维的连续输入,然后使用StandardScaler对数据进行标准化。再生成一个(10000,1)的target,表示最终拟合的目标分数。最后使用train_test_split函数将数据集划分为训练集和验证集。
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
91 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
2月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
4041 3
|
2月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
87 0
|
4月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
62 0
|
4月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
59 0
|
4月前
|
机器学习/深度学习 自然语言处理 TensorFlow
|
5月前
|
机器学习/深度学习 TensorFlow API
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
|
机器学习/深度学习 存储 自然语言处理