DNS通道检测 国外学术界研究情况——研究方法:基于流量,使用机器学习分类算法居多,也有使用聚类算法的;此外使用域名zif low也有

简介:

http://www.ijrter.com/papers/volume-2/issue-4/dns-tunneling-detection.pdf 
《DNS Tunneling Detection》
In this paper we have presented a method of the DNS tunneling detection based on the clustering of the DNS traffic images.
检测手段也分为两种:
DNS packet analysis and DNS traffic analysis. Packet analysis denotes the request and response payload examination. Traffic analysis denotes the packets study in time to collect statistics – such as count of the packets from a single host, submission frequency, etc.
DNS packet analysis方法:
1. Request and response packet size analysis.
2. Domain names entropy analysis. 
3. Usage of the non-common types of DNS resource records. 
4. Frequency of the digit occurrences in the domain names.

DNS traffic analysis techniques:
1. The DNS traffic volume from a single IP address.
2. 2. The DNS traffic volume for certain domains. 
3. The DNS server geographic location.
4. Time of the DNS resource records creation.


http://onlinelibrary.wiley.com/wol1/doi/10.1002/dac.2836/full
DNS tunneling detection through statistical fingerprints of protocol messages and machine learning
The proposed monitoring mechanism looks at simple statistical properties of protocol messages, such as statistics of packets inter-arrival times and of packets sizes.

https://arxiv.org/abs/1004.4358 
Detecting DNS Tunnels Using Character Frequency Analysis
This paper explores the possibility of detecting DNS tunnels by analyzing the unigram, bigram, and trigram character frequencies of domains in DNS queries and responses. It is empirically shown how domains follow Zipf's law in a similar pattern to natural languages, whereas tunneled traffic has more evenly distributed character frequencies. This approach allows tunnels to be detected across multiple domains, whereas previous methods typically concentrate on monitoring point to point systems. Anomalies are quickly discovered when tunneled traffic is compared to the character frequency fingerprint of legitimate domain traffic.

http://www.sciencedirect.com/science/article/pii/S1389128608003071
Tunnel Hunter: Detecting application-layer tunnels with statistical fingerprinting
In this paper we propose a statistical classification mechanism that could represent an important step towards new techniques for securing network boundaries. The mechanism, called Tunnel Hunter, relies on the statistical characterization at the IP-layer of the traffic that is allowed by a given security policy, such as HTTP or SSH. The statistical profiles of the allowed usages of those protocols can then be dynamically checked against traffic flows crossing the network boundaries, identifying with great accuracy when a flow is being used to tunnel another protocol. 
类似文章在:A Bigram based Real Time DNS Tunnel Detection Approach 
http://www.sciencedirect.com/science/article/pii/S1877050913002421


http://ieeexplore.ieee.org/abstract/document/6755060/?reload=true 
Basic classifiers for DNS tunneling detection
The paper deals with DNS tunneling detection by means of simple supervised learning schemes, applied to statistical features of DNS queries and answers.

https://link.springer.com/chapter/10.1007/978-3-319-07995-0_46
Supervised Learning Approaches with Majority Voting for DNS Tunneling Detection
To do that, we pose a classification problem on several statistical fingerprints
(features) of query and answers, acquired during the system evolution. More
specifically, let q and a be the packet sizes of a query and the corresponding
answer。

https://link.springer.com/chapter/10.1007/978-3-642-38998-6_16
Flow-Based Detection of DNS Tunnels
In this paper we develop such a technique, based on the monitoring and analysis of network flows. Our methodology combines flow information with statistical methods for anomaly detection. The contribution of our paper is twofold. Firstly, based on flow-derived variables that we identified as indicative of DNS tunnelling activities, we identify and evaluate a set of non-parametrical statistical tests that are particularly useful in this context. Secondly, the efficacy of the resulting tests is demonstrated by extensive validation experiments in an operational environment, covering many different usage scenarios.

 

















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7090451.html,如需转载请自行联系原作者

相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
2月前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
159 0
|
2月前
|
机器学习/深度学习 数据采集 算法
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
|
3月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
124 0
|
3月前
|
算法 数据可视化 数据挖掘
基于AOA算术优化的KNN数据聚类算法matlab仿真
本程序基于AOA算术优化算法优化KNN聚类,使用Matlab 2022A编写。通过AOA搜索最优特征子集,提升KNN聚类精度,并对比不同特征数量下的聚类效果。包含完整仿真流程与可视化结果展示。
|
4月前
|
机器学习/深度学习 人工智能 算法
AP聚类算法实现三维数据点分类
AP聚类算法实现三维数据点分类
164 0
|
6月前
|
机器学习/深度学习 存储 监控
上网管理监控软件的 Go 语言流量特征识别算法实现与优化
本文探讨基于Go语言的流量特征识别算法,用于上网管理监控软件。核心内容涵盖AC自动机算法原理、实现及优化,通过路径压缩、哈希表存储和节点合并策略提升性能。实验表明,优化后算法内存占用降低30%,匹配速度提升20%。在1000Mbps流量下,CPU利用率低于10%,内存占用约50MB,检测准确率达99.8%。未来可进一步优化高速网络处理能力和融合机器学习技术。
188 10
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。

相关产品

  • 云解析DNS
  • 推荐镜像

    更多
  • DNS