DNS通道检测 国外学术界研究情况——研究方法:基于流量,使用机器学习分类算法居多,也有使用聚类算法的;此外使用域名zif low也有

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

http://www.ijrter.com/papers/volume-2/issue-4/dns-tunneling-detection.pdf 
《DNS Tunneling Detection》
In this paper we have presented a method of the DNS tunneling detection based on the clustering of the DNS traffic images.
检测手段也分为两种:
DNS packet analysis and DNS traffic analysis. Packet analysis denotes the request and response payload examination. Traffic analysis denotes the packets study in time to collect statistics – such as count of the packets from a single host, submission frequency, etc.
DNS packet analysis方法:
1. Request and response packet size analysis.
2. Domain names entropy analysis. 
3. Usage of the non-common types of DNS resource records. 
4. Frequency of the digit occurrences in the domain names.

DNS traffic analysis techniques:
1. The DNS traffic volume from a single IP address.
2. 2. The DNS traffic volume for certain domains. 
3. The DNS server geographic location.
4. Time of the DNS resource records creation.


http://onlinelibrary.wiley.com/wol1/doi/10.1002/dac.2836/full
DNS tunneling detection through statistical fingerprints of protocol messages and machine learning
The proposed monitoring mechanism looks at simple statistical properties of protocol messages, such as statistics of packets inter-arrival times and of packets sizes.

https://arxiv.org/abs/1004.4358 
Detecting DNS Tunnels Using Character Frequency Analysis
This paper explores the possibility of detecting DNS tunnels by analyzing the unigram, bigram, and trigram character frequencies of domains in DNS queries and responses. It is empirically shown how domains follow Zipf's law in a similar pattern to natural languages, whereas tunneled traffic has more evenly distributed character frequencies. This approach allows tunnels to be detected across multiple domains, whereas previous methods typically concentrate on monitoring point to point systems. Anomalies are quickly discovered when tunneled traffic is compared to the character frequency fingerprint of legitimate domain traffic.

http://www.sciencedirect.com/science/article/pii/S1389128608003071
Tunnel Hunter: Detecting application-layer tunnels with statistical fingerprinting
In this paper we propose a statistical classification mechanism that could represent an important step towards new techniques for securing network boundaries. The mechanism, called Tunnel Hunter, relies on the statistical characterization at the IP-layer of the traffic that is allowed by a given security policy, such as HTTP or SSH. The statistical profiles of the allowed usages of those protocols can then be dynamically checked against traffic flows crossing the network boundaries, identifying with great accuracy when a flow is being used to tunnel another protocol. 
类似文章在:A Bigram based Real Time DNS Tunnel Detection Approach 
http://www.sciencedirect.com/science/article/pii/S1877050913002421


http://ieeexplore.ieee.org/abstract/document/6755060/?reload=true 
Basic classifiers for DNS tunneling detection
The paper deals with DNS tunneling detection by means of simple supervised learning schemes, applied to statistical features of DNS queries and answers.

https://link.springer.com/chapter/10.1007/978-3-319-07995-0_46
Supervised Learning Approaches with Majority Voting for DNS Tunneling Detection
To do that, we pose a classification problem on several statistical fingerprints
(features) of query and answers, acquired during the system evolution. More
specifically, let q and a be the packet sizes of a query and the corresponding
answer。

https://link.springer.com/chapter/10.1007/978-3-642-38998-6_16
Flow-Based Detection of DNS Tunnels
In this paper we develop such a technique, based on the monitoring and analysis of network flows. Our methodology combines flow information with statistical methods for anomaly detection. The contribution of our paper is twofold. Firstly, based on flow-derived variables that we identified as indicative of DNS tunnelling activities, we identify and evaluate a set of non-parametrical statistical tests that are particularly useful in this context. Secondly, the efficacy of the resulting tests is demonstrated by extensive validation experiments in an operational environment, covering many different usage scenarios.

 

















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7090451.html,如需转载请自行联系原作者

相关文章
|
2月前
|
安全 Ubuntu Shell
深入解析 vsftpd 2.3.4 的笑脸漏洞及其检测方法
本文详细解析了 vsftpd 2.3.4 版本中的“笑脸漏洞”,该漏洞允许攻击者通过特定用户名和密码触发后门,获取远程代码执行权限。文章提供了漏洞概述、影响范围及一个 Python 脚本,用于检测目标服务器是否受此漏洞影响。通过连接至目标服务器并尝试登录特定用户名,脚本能够判断服务器是否存在该漏洞,并给出相应的警告信息。
195 84
|
2月前
|
域名解析 负载均衡 安全
DNS技术标准趋势和安全研究
本文探讨了互联网域名基础设施的结构性安全风险,由清华大学段教授团队多年研究总结。文章指出,DNS系统的安全性不仅受代码实现影响,更源于其设计、实现、运营及治理中的固有缺陷。主要风险包括协议设计缺陷(如明文传输)、生态演进隐患(如单点故障增加)和薄弱的信任关系(如威胁情报被操纵)。团队通过多项研究揭示了这些深层次问题,并呼吁构建更加可信的DNS基础设施,以保障全球互联网的安全稳定运行。
|
4月前
|
域名解析 JavaScript 网络协议
Vue框架中根据域名获取租户ID的方法
通过上述方法,Vue应用可以根据域名动态获取租户ID,进而实现根据不同租户展示定制化信息的多租户系统功能。这种技术不仅增加了应用的灵活性,也提升了用户体验。
85 2
|
4月前
|
运维 安全 网络协议
Python 网络编程:端口检测与IP解析
本文介绍了使用Python进行网络编程的两个重要技能:检查端口状态和根据IP地址解析主机名。通过`socket`库实现端口扫描和主机名解析的功能,并提供了详细的示例代码。文章最后还展示了如何整合这两部分代码,实现一个简单的命令行端口扫描器,适用于网络故障排查和安全审计。
74 0
|
5月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
72 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
6月前
|
图形学 C#
超实用!深度解析Unity引擎,手把手教你从零开始构建精美的2D平面冒险游戏,涵盖资源导入、角色控制与动画、碰撞检测等核心技巧,打造沉浸式游戏体验完全指南
【8月更文挑战第31天】本文是 Unity 2D 游戏开发的全面指南,手把手教你从零开始构建精美的平面冒险游戏。首先,通过 Unity Hub 创建 2D 项目并导入游戏资源。接着,编写 `PlayerController` 脚本来实现角色移动,并添加动画以增强视觉效果。最后,通过 Collider 2D 组件实现碰撞检测等游戏机制。每一步均展示 Unity 在 2D 游戏开发中的强大功能。
316 6
|
6月前
|
机器学习/深度学习 传感器 安全
|
6月前
|
机器学习/深度学习 算法 大数据
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
101 0
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
|
6月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
142 0
|
6月前
《黑神话:悟空》中的物理模拟与碰撞检测技术解析
【8月更文第26天】《黑神话:悟空》是一款备受期待的动作角色扮演游戏,以其精致的画面和丰富的物理效果而闻名。为了实现游戏中的真实感和互动性,开发团队使用了先进的物理引擎和碰撞检测系统。本文将深入探讨《黑神话:悟空》中的物理模拟与碰撞检测技术,并通过一些伪代码示例来展示其实现细节。
259 0

热门文章

最新文章

相关产品

  • 云解析DNS
  • 推荐镜像

    更多