RDD分区2GB限制

简介:

本文目的

 

最近使用spark处理较大的数据时,遇到了分区2G限制的问题(ken)。找到了解决方法,并且在网上收集了一些资料,记录在这里,作为备忘。

 

问题现象

 

遇到这个问题时,spark日志会报如下的日志,

片段1

15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in stage 6.0 (TID 120, 10.215.149.47): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132)
at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:517)
at org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:432)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:618)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:146)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)

 

片段2

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Starting task 20.2 in stage 6.0 (TID 146, 10.196.151.213, PROCESS_LOCAL, 1666 bytes)

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Lost task 20.2 in stage 6.0 (TID 146) on executor 10.196.151.213: java.lang.IllegalArgumentException (Size exceeds Integer.MAX_VALUE) [duplicate 1]

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Starting task 20.3 in stage 6.0 (TID 147, 10.196.151.213, PROCESS_LOCAL, 1666 bytes)

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Lost task 20.3 in stage 6.0 (TID 147) on executor 10.196.151.213: java.lang.IllegalArgumentException (Size exceeds Integer.MAX_VALUE) [duplicate 2]

15/04/16 14:19:45 ERROR scheduler.TaskSetManager: Task 20 in stage 6.0 failed 4 times; aborting job

15/04/16 14:19:45 INFO cluster.YarnClusterScheduler: Cancelling stage 6

15/04/16 14:19:45 INFO cluster.YarnClusterScheduler: Stage 6 was cancelled

15/04/16 14:19:45 INFO scheduler.DAGScheduler: Job 6 failed: collectAsMap at DecisionTree.scala:653, took 239.760845 s

15/04/16 14:19:45 ERROR yarn.ApplicationMaster: User class threw exception: Job aborted due to stage failure: Task 20 in stage 6.0 failed 4 times, most recent failure: Lost task 20.3 in stage 6.0 (TID 147, 10.196.151.213): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE

at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)

 

注意红色高亮部分,异常就是某个partition的数据量超过了Integer.MAX_VALUE(2147483647 = 2GB)。

 

解决方法

 

手动设置RDD的分区数量。当前使用的Spark默认RDD分区是18个,后来手动设置为1000个,上面这个问题就迎刃而解了。可以在RDD加载后,使用RDD.repartition(numPart:Int)函数重新设置分区数量。

 

为什么2G限制

 

目前spark社区对这个限制有很多讨(tu)论(cao),spark官方团队已经注意到了这个问题,但是直到1.2版本,这个问题还是没有解决。因为牵涉到整个RDD的实现框架,所以改进成本相当大!

 

下面是一些相关的资料,有兴趣的读者可以进一步的阅读:

 

个人思(yu)考(jian)

 

这个限制有一定合理性。因为RDD中partition的操作是并发执行的,如果partition量过少,导致并发数过少,会限制计算效率。所以,基于这个限制,spark应用程序开发者会主动扩大partition数量,也就是加大并发量,最终提高计算性能。

 

以上只是一些个能思考,如果不正确,还请拍砖。

声明:如有转载本博文章,请注明出处。您的支持是我的动力!文章部分内容来自互联网,本人不负任何法律责任。
分类:  大数据

本文转自bourneli博客园博客,原文链接:http://www.cnblogs.com/bourneli/p/4456109.html ,如需转载请自行联系原作者
相关文章
|
8月前
|
存储 运维 负载均衡
分区存储
分区存储
73 0
|
SQL HIVE
Hive分区+根据分区查询
Hive分区+根据分区查询
|
8月前
|
分布式计算 Hadoop 大数据
Spark 【分区与并行度】
Spark 【分区与并行度】
|
存储 程序员 编译器
C++程序的内存分区
C++程序的内存分区
|
分布式计算 并行计算 Spark
|
程序员 编译器 C语言
C/C++内存分区
C/C++内存分区
274 0
C/C++内存分区
|
存储 程序员 编译器
C++内存分区模型
C++内存分区模型
162 0
C++内存分区模型
|
分布式计算 大数据 Shell
RDD 的分区和 shuffle 创建 RDD 时指定分区数 | 学习笔记
快速学习 RDD 的分区和 shuffle 创建 RDD 时指定分区数
105 0
RDD 的分区和 shuffle 创建 RDD 时指定分区数 | 学习笔记
|
分布式计算 大数据 Spark
RDD 的分区和 Shuflee_通过其他算子指定分区数 | 学习笔记
快速学习 RDD 的分区和 Shuflee_通过其他算子指定分区数
106 0
RDD 的分区和 Shuflee_通过其他算子指定分区数 | 学习笔记
|
分布式计算 大数据 Shell
RDD 的分区和 Shuffle 查看分区 | 学习笔记
快速学习 RDD 的分区和 Shuffle 查看分区
129 0
RDD 的分区和 Shuffle 查看分区 | 学习笔记