RDD分区2GB限制

简介:

本文目的

 

最近使用spark处理较大的数据时,遇到了分区2G限制的问题(ken)。找到了解决方法,并且在网上收集了一些资料,记录在这里,作为备忘。

 

问题现象

 

遇到这个问题时,spark日志会报如下的日志,

片段1

15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in stage 6.0 (TID 120, 10.215.149.47): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132)
at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:517)
at org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:432)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:618)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:146)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)

 

片段2

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Starting task 20.2 in stage 6.0 (TID 146, 10.196.151.213, PROCESS_LOCAL, 1666 bytes)

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Lost task 20.2 in stage 6.0 (TID 146) on executor 10.196.151.213: java.lang.IllegalArgumentException (Size exceeds Integer.MAX_VALUE) [duplicate 1]

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Starting task 20.3 in stage 6.0 (TID 147, 10.196.151.213, PROCESS_LOCAL, 1666 bytes)

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Lost task 20.3 in stage 6.0 (TID 147) on executor 10.196.151.213: java.lang.IllegalArgumentException (Size exceeds Integer.MAX_VALUE) [duplicate 2]

15/04/16 14:19:45 ERROR scheduler.TaskSetManager: Task 20 in stage 6.0 failed 4 times; aborting job

15/04/16 14:19:45 INFO cluster.YarnClusterScheduler: Cancelling stage 6

15/04/16 14:19:45 INFO cluster.YarnClusterScheduler: Stage 6 was cancelled

15/04/16 14:19:45 INFO scheduler.DAGScheduler: Job 6 failed: collectAsMap at DecisionTree.scala:653, took 239.760845 s

15/04/16 14:19:45 ERROR yarn.ApplicationMaster: User class threw exception: Job aborted due to stage failure: Task 20 in stage 6.0 failed 4 times, most recent failure: Lost task 20.3 in stage 6.0 (TID 147, 10.196.151.213): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE

at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)

 

注意红色高亮部分,异常就是某个partition的数据量超过了Integer.MAX_VALUE(2147483647 = 2GB)。

 

解决方法

 

手动设置RDD的分区数量。当前使用的Spark默认RDD分区是18个,后来手动设置为1000个,上面这个问题就迎刃而解了。可以在RDD加载后,使用RDD.repartition(numPart:Int)函数重新设置分区数量。

 

为什么2G限制

 

目前spark社区对这个限制有很多讨(tu)论(cao),spark官方团队已经注意到了这个问题,但是直到1.2版本,这个问题还是没有解决。因为牵涉到整个RDD的实现框架,所以改进成本相当大!

 

下面是一些相关的资料,有兴趣的读者可以进一步的阅读:

 

个人思(yu)考(jian)

 

这个限制有一定合理性。因为RDD中partition的操作是并发执行的,如果partition量过少,导致并发数过少,会限制计算效率。所以,基于这个限制,spark应用程序开发者会主动扩大partition数量,也就是加大并发量,最终提高计算性能。

 

以上只是一些个能思考,如果不正确,还请拍砖。

声明:如有转载本博文章,请注明出处。您的支持是我的动力!文章部分内容来自互联网,本人不负任何法律责任。
分类:  大数据

本文转自bourneli博客园博客,原文链接:http://www.cnblogs.com/bourneli/p/4456109.html ,如需转载请自行联系原作者
相关文章
|
Oracle 关系型数据库 Linux
|
缓存 监控 NoSQL
Redis - 在电商购物车场景下的实战分析
Redis - 在电商购物车场景下的实战分析
1014 0
|
存储 容灾 安全
云上架构和传统IT架构有什么区别及优势?
在云计算走向成熟之前,我们更应该关注系统云计算架构的细节,从传统的架构到云上大数据,实现了很多的转变。
4192 0
云上架构和传统IT架构有什么区别及优势?
|
编解码 中间件 API
API实现跨平台互操作性
【10月更文挑战第16天】API实现跨平台互操作性
402 2
|
机器学习/深度学习 算法 机器人
相隔3000英里,用苹果头显遥控机器人!UCSD、MIT华人团队开源TeleVision
【7月更文挑战第19天】UCSD和MIT华人团队开发的TeleVision技术实现了远程操控机器人。借助AR/VR,操作者通过头显设备获得实时的机器人视角,并通过手势控制执行任务。系统支持多人协作,已在远距离实验中成功导航复杂环境。不过,高带宽需求和交互学习曲线是挑战。[论文链接](https://robot-tv.github.io/resources/television.pdf)**
365 14
|
机器学习/深度学习 人工智能 算法
AI在医疗影像识别中的应用与实践
本文综述了人工智能在医疗影像分析的应用,涵盖了基础理论、操作流程、关键算法及实践案例。通过探讨卷积神经网络等技术,展示了如何构建医疗影像分析系统并提高诊断精度和效率,为医疗行业的创新发展提供了有力支持。
|
安全 Java Shell
Android 权限管理
Android 权限管理
643 0
|
算法 数据挖掘 知识图谱
基于品类关系,虚拟类目如何建设?
类目-属性项-属性值体系(简称CPV)是淘宝建设中非常重要的基石,在商品的发布、管理,以及搜索场景下都大量应用。比如每个商品都有自己的类目、以及属性,而且需要发布在适合自己的类目下,才能够方便管理和搜索;在用户搜索的过程中,对Query的类目预测也是相关性中非常重要的一环。
6641 0
|
人工智能 分布式计算 Cloud Native
阿里云PAI平台架构介绍
阿里云PAI平台架构介绍
372 0
|
存储 分布式计算 Hadoop
深入浅出:Hadoop的start-balancer.sh与hdfs balancer分布式数据均衡
Hadoop的HDFS集群非常容易出现机器与机器之间磁盘利用率不平衡的情况,比如集群中添加新的数据节点。当HDFS出现不平衡状况的时候,将引发很多问题,比如:1、MR程序无法很好地利用本地计算的优势2、机器之间无法达到更好的网络带宽使用率,机器磁盘无法利用等等。
3983 0